本文整理汇总了Python中tensorflow.compat.v2.TensorSpec方法的典型用法代码示例。如果您正苦于以下问题:Python v2.TensorSpec方法的具体用法?Python v2.TensorSpec怎么用?Python v2.TensorSpec使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v2
的用法示例。
在下文中一共展示了v2.TensorSpec方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import TensorSpec [as 别名]
def __init__(self, input_tensor_spec=None, state_spec=(), name=None):
"""Creates an instance of `Network`.
Args:
input_tensor_spec: A nest of `tf.TypeSpec` representing the
input observations. Optional. If not provided, `create_variables()`
will fail unless a spec is provided.
state_spec: A nest of `tensor_spec.TensorSpec` representing the state
needed by the network. Default is `()`, which means no state.
name: (Optional.) A string representing the name of the network.
"""
# Disable autocast because it may convert bfloats to other types, breaking
# our spec checks.
super(Network, self).__init__(name=name, autocast=False)
common.check_tf1_allowed()
# Required for summary() to work.
self._is_graph_network = False
self._input_tensor_spec = input_tensor_spec
# NOTE(ebrevdo): Would have preferred to call this output_tensor_spec, but
# looks like keras.Layer already reserves that one.
self._network_output_spec = None
self._state_spec = state_spec
示例2: testReadWriteSpecs
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import TensorSpec [as 别名]
def testReadWriteSpecs(self):
logdir = FLAGS.test_tmpdir
specs = {
'a': tf.TensorSpec(shape=(2, 3), dtype=tf.float32),
'b': {
'b_1': tf.TensorSpec(shape=(5,), dtype=tf.string),
'b_2': tf.TensorSpec(shape=(5, 6), dtype=tf.int32),
}
}
utils.write_specs(logdir, specs)
# Now read and verify
specs_read = utils.read_specs(logdir)
def _check_equal(sp1, sp2):
self.assertEqual(sp1, sp2)
tf.nest.map_structure(_check_equal, specs, specs_read)
示例3: test_run_eval_actor_once
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import TensorSpec [as 别名]
def test_run_eval_actor_once(self):
hparams = {}
hparams['max_iter'] = 1
hparams['num_episodes_per_iter'] = 5
hparams['logdir'] = os.path.join(FLAGS.test_tmpdir, 'model')
mock_problem = testing_utils.MockProblem(unroll_length=FLAGS.unroll_length)
agent = mock_problem.get_agent()
ckpt_manager = _get_ckpt_manager(hparams['logdir'], agent=agent)
ckpt_manager.save(checkpoint_number=0)
# Create a no-op gRPC server that responds to Aggregator RPCs.
server_address = 'unix:/tmp/eval_actor_test_grpc'
server = grpc.Server([server_address])
@tf.function(input_signature=[tf.TensorSpec(shape=(), dtype=tf.string)])
def eval_enqueue(_):
return []
server.bind(eval_enqueue, batched=False)
server.start()
eval_actor.run_with_aggregator(mock_problem, server_address, hparams)
示例4: __init__
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import TensorSpec [as 别名]
def __init__(self, state_space_size, unroll_length=1):
self._state_space_size = state_space_size
# Creates simple dynamics (T stands for transition):
# states = [0, 1, ... len(state_space_size - 1)] + [STOP]
# actions = [-1, 1]
# T(s, a) = s + a iff (s + a) is a valid state
# = STOP otherwise
self._action_space = [-1, 1]
self._current_state = None
self._env_spec = common.EnvOutput(
reward=tf.TensorSpec(shape=[unroll_length + 1], dtype=tf.float32),
done=tf.TensorSpec(shape=[unroll_length + 1], dtype=tf.bool),
observation={
'f1':
tf.TensorSpec(
shape=[unroll_length + 1, 4, 10], dtype=tf.float32),
'f2':
tf.TensorSpec(
shape=[unroll_length + 1, 7, 10, 2], dtype=tf.float32)
},
info=tf.TensorSpec(shape=[unroll_length + 1], dtype=tf.string))
示例5: export_serving_model
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import TensorSpec [as 别名]
def export_serving_model(tf_transform_output, model, output_dir):
"""Exports a keras model for serving.
Args:
tf_transform_output: Wrapper around output of tf.Transform.
model: A keras model to export for serving.
output_dir: A directory where the model will be exported to.
"""
# The layer has to be saved to the model for keras tracking purpases.
model.tft_layer = tf_transform_output.transform_features_layer()
@tf.function
def serve_tf_examples_fn(serialized_tf_examples):
"""Serving tf.function model wrapper."""
feature_spec = RAW_DATA_FEATURE_SPEC.copy()
feature_spec.pop(LABEL_KEY)
parsed_features = tf.io.parse_example(serialized_tf_examples, feature_spec)
transformed_features = model.tft_layer(parsed_features)
outputs = model(transformed_features)
classes_names = tf.constant([['0', '1']])
classes = tf.tile(classes_names, [tf.shape(outputs)[0], 1])
return {'classes': classes, 'scores': outputs}
concrete_serving_fn = serve_tf_examples_fn.get_concrete_function(
tf.TensorSpec(shape=[None], dtype=tf.string, name='inputs'))
signatures = {'serving_default': concrete_serving_fn}
# This is required in order to make this model servable with model_server.
versioned_output_dir = os.path.join(output_dir, '1')
model.save(versioned_output_dir, save_format='tf', signatures=signatures)
示例6: get_state_spec
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import TensorSpec [as 别名]
def get_state_spec(layer: tf.keras.layers.Layer) -> types.NestedTensorSpec:
"""Extracts the state spec from a layer.
Args:
layer: The layer to extract from; can be a `Network`.
Returns:
The state spec.
Raises:
TypeError: If `layer` is a subclass of `tf.keras.layers.RNN` (it must
be wrapped by an `RNNWrapper` object).
ValueError: If `layer` is a Keras layer and `create_variables` has
not been called on it.
"""
if isinstance(layer, Network):
return layer.state_spec
if isinstance(layer, tf.keras.layers.RNN):
raise TypeError("RNN Layer must be wrapped inside "
"`tf_agents.keras_layers.RNNWrapper`: {}".format(layer))
initial_state = getattr(layer, "get_initial_state", None)
state_size = getattr(layer, "state_size", None)
if initial_state is not None and state_size is None:
raise ValueError(
"Layer lacks a `state_size` property. Unable to extract state "
"spec: {}".format(layer))
state_spec = ()
if state_size is not None:
state_spec = tf.nest.map_structure(
lambda s: tf.TensorSpec(dtype=layer.dtype, shape=s), state_size)
return state_spec
示例7: __init__
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import TensorSpec [as 别名]
def __init__(self, time_step_spec, net):
super(MyPolicy, self).__init__(
time_step_spec,
action_spec=tf.TensorSpec((None,), tf.float32))
self._net = net
示例8: testIncompatibleStructureInputs
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import TensorSpec [as 别名]
def testIncompatibleStructureInputs(self):
with self.assertRaisesRegex(
ValueError,
r'`nested_layers` and `input_spec` do not have matching structures'):
nest_map.NestMap(
tf.keras.layers.Dense(8),
input_spec={'ick': tf.TensorSpec(8, tf.float32)})
with self.assertRaisesRegex(
ValueError,
r'`inputs` and `self.nested_layers` do not have matching structures'):
net = nest_map.NestMap(tf.keras.layers.Dense(8))
net.create_variables({'ick': tf.TensorSpec((1,), dtype=tf.float32)})
with self.assertRaisesRegex(
ValueError,
r'`inputs` and `self.nested_layers` do not have matching structures'):
net = nest_map.NestMap(tf.keras.layers.Dense(8))
net({'ick': tf.constant([[1.0]])})
with self.assertRaisesRegex(
ValueError,
r'`network_state` and `state_spec` do not have matching structures'):
net = nest_map.NestMap(
tf.keras.layers.LSTM(8, return_state=True, return_sequences=True))
net(tf.ones((1, 2)), network_state=(tf.ones((1, 1)), ()))
示例9: setUp
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import TensorSpec [as 别名]
def setUp(self):
super(PolicyInfoUpdaterWrapperTest, self).setUp()
self._obs_spec = tensor_spec.TensorSpec([2], tf.float32)
self._time_step_spec = ts.time_step_spec(self._obs_spec)
示例10: test_model_id_updater
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import TensorSpec [as 别名]
def test_model_id_updater(self):
loc = 0.0
scale = 0.5
action_spec = tensor_spec.BoundedTensorSpec([1], tf.float32, tf.float32.min,
tf.float32.max)
wrapped_policy = DistributionPolicy(
distribution=tfp.distributions.Normal([loc], [scale]),
time_step_spec=self._time_step_spec,
action_spec=action_spec,
info_spec={
'test_info':
tf.TensorSpec(shape=(1,), dtype=tf.int32, name='test_info')
})
updater_info_spec = {
'model_id': tf.TensorSpec(shape=(1,), dtype=tf.int32, name='model_id')
}
updater_info_spec.update(wrapped_policy.info_spec)
policy = policy_info_updater_wrapper.PolicyInfoUpdaterWrapper(
policy=wrapped_policy,
info_spec=updater_info_spec,
updater_fn=ModelIdUpdater(),
name='model_id_updater')
self.assertEqual(policy.time_step_spec, self._time_step_spec)
self.assertEqual(policy.action_spec, action_spec)
observations = tf.constant([[1, 2], [3, 4]], dtype=tf.float32)
time_step = ts.restart(observations, batch_size=2)
action_step = policy.action(time_step)
distribution_step = policy.distribution(time_step)
tf.nest.assert_same_structure(action_spec, action_step.action)
tf.nest.assert_same_structure(action_spec, distribution_step.action)
self.assertListEqual(list(self.evaluate(action_step.info['model_id'])), [2])
self.assertListEqual(
list(self.evaluate(distribution_step.info['model_id'])), [2])
示例11: _check_value
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import TensorSpec [as 别名]
def _check_value(self, tensor: tf.Tensor, tensorspec: tf.TensorSpec):
if not tf.TensorShape(tf.squeeze(tensor.get_shape())).is_compatible_with(
tensorspec.shape):
raise ValueError(
'Tensor {} is not compatible with specification {}.'.format(
tensor, tensorspec))
示例12: assert_matches_spec
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import TensorSpec [as 别名]
def assert_matches_spec(specs, tensor_list):
"""Assert that a list of tensors matches the given TensorSpecs."""
# Weirdly `tf.nest.pack_sequence_as` doesn't fail if tensor_list doesn't
# conform to the specs type. So first pack the sequence, then explicitly
# check the compatibility of each tensor with the corresponding spec.
packed_tensors = tf.nest.pack_sequence_as(specs, tensor_list)
packed_tensors = tf.nest.map_structure(tf.convert_to_tensor, packed_tensors)
def is_compatible(sp, tensor):
assert sp.is_compatible_with(
tensor), 'TensorSpec {} is not compatible with tensor {}'.format(
sp, tensor)
tf.nest.map_structure(is_compatible, specs, packed_tensors)
示例13: add_time_dimension
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import TensorSpec [as 别名]
def add_time_dimension(s: tf.TensorSpec):
return tf.TensorSpec([FLAGS.unroll_length + 1] + s.shape.as_list(), s.dtype)
示例14: _write_tensor_specs
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import TensorSpec [as 别名]
def _write_tensor_specs(initial_agent_state: Any,
env_output: common.EnvOutput,
agent_output: common.AgentOutput,
actor_action: common.ActorAction,
loss_type: Optional[int] = common.AC_LOSS):
"""Writes tensor specs of ActorOutput tuple to disk.
Args:
initial_agent_state: A tensor or nested structure of tensor without any time
or batch dimensions.
env_output: An instance of `EnvOutput` where individual tensors don't have
time and batch dimensions.
agent_output: An instance of `AgentOutput` where individual tensors don't
have time and batch dimensions.
actor_action: An instance of `ActorAction`.
loss_type: A scalar int denoting the loss type.
"""
actor_output = common.ActorOutput(
initial_agent_state,
env_output,
agent_output,
actor_action,
loss_type,
info='')
specs = tf.nest.map_structure(tf.convert_to_tensor, actor_output)
specs = tf.nest.map_structure(tf.TensorSpec.from_tensor, specs)
env_output = tf.nest.map_structure(add_time_dimension, specs.env_output)
agent_output = tf.nest.map_structure(add_time_dimension, specs.agent_output)
actor_action = tf.nest.map_structure(add_time_dimension, specs.actor_action)
specs = specs._replace(
env_output=env_output,
agent_output=agent_output,
actor_action=actor_action)
utils.write_specs(FLAGS.logdir, specs)
示例15: eval_on_shapes
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import TensorSpec [as 别名]
def eval_on_shapes(f, static_argnums=()):
"""Returns a function that evaluates `f` given input shapes and dtypes.
It transforms function `f` to a function that performs the same computation as
`f` but only on shapes and dtypes (a.k.a. shape inference).
Args:
f: the function to be transformed.
static_argnums: See documentation of `jit`.
Returns:
A function whose input arguments can be either the same as `f`'s or only
their shapes/dtypes represented by `TensorSpec`, and whose return values are
`TensorSpec`s with the same nested structure as `f`'s return values.
"""
# TODO(wangpeng): tf.function could add a knob to turn off materializing the
# graph, so that we don't waste computation and memory when we just want
# shape inference.
tf_f = jit(f, static_argnums=static_argnums).tf_function
# pylint: disable=missing-docstring
def f_return(*args):
def abstractify(x):
x = _canonicalize_jit_arg(x)
if isinstance(x, (tf.Tensor, tf_np.ndarray)):
return tf.TensorSpec(x.shape, x.dtype)
else:
return x
def to_tensor_spec(x):
if isinstance(x, tf.Tensor):
return tf.TensorSpec(x.shape, x.dtype)
else:
return x
new_args = []
for i, arg in enumerate(args):
if i in static_argnums:
new_args.append(arg)
else:
new_args.append(tf.nest.map_structure(abstractify, arg))
res = tf_f.get_concrete_function(*new_args).structured_outputs
return tf.nest.map_structure(to_tensor_spec, res)
# Provides access to `tf_f` for testing purpose.
f_return._tf_function = tf_f # pylint: disable=protected-access
return f_return