本文整理汇总了Python中tensorflow.compat.v2.Tensor方法的典型用法代码示例。如果您正苦于以下问题:Python v2.Tensor方法的具体用法?Python v2.Tensor怎么用?Python v2.Tensor使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v2
的用法示例。
在下文中一共展示了v2.Tensor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: compute_logits
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Tensor [as 别名]
def compute_logits(self, token_ids: tf.Tensor, training: bool) -> tf.Tensor:
"""
Implements a language model, where each output is conditional on the current
input and inputs processed so far.
Args:
token_ids: int32 tensor of shape [B, T], storing integer IDs of tokens.
training: Flag indicating if we are currently training (used to toggle dropout)
Returns:
tf.float32 tensor of shape [B, T, V], storing the distribution over output symbols
for each timestep for each batch element.
"""
# TODO 5# 1) Embed tokens
# TODO 5# 2) Run RNN on embedded tokens
# TODO 5# 3) Project RNN outputs onto the vocabulary to obtain logits.
return rnn_output_logits
示例2: ones_like
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Tensor [as 别名]
def ones_like(a, dtype=None):
"""Returns an array of ones with the shape and type of the input array.
Args:
a: array_like. Could be an ndarray, a Tensor or any object that can be
converted to a Tensor using `tf.convert_to_tensor`.
dtype: Optional, defaults to dtype of the input array. The type of the
resulting ndarray. Could be a python type, a NumPy type or a TensorFlow
`DType`.
Returns:
An ndarray.
"""
if isinstance(a, arrays_lib.ndarray):
a = a.data
if dtype is None:
dtype = utils.result_type(a)
else:
dtype = utils.result_type(dtype)
return arrays_lib.tensor_to_ndarray(tf.ones_like(a, dtype))
示例3: diagflat
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Tensor [as 别名]
def diagflat(v, k=0):
"""Returns a 2-d array with flattened `v` as diagonal.
Args:
v: array_like of any rank. Gets flattened when setting as diagonal. Could be
an ndarray, a Tensor or any object that can be converted to a Tensor using
`tf.convert_to_tensor`.
k: Position of the diagonal. Defaults to 0, the main diagonal. Positive
values refer to diagonals shifted right, negative values refer to
diagonals shifted left.
Returns:
2-d ndarray.
"""
v = asarray(v)
return diag(tf.reshape(v.data, [-1]), k)
示例4: all
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Tensor [as 别名]
def all(a, axis=None, keepdims=None): # pylint: disable=redefined-builtin
"""Whether all array elements or those along an axis evaluate to true.
Casts the array to bool type if it is not already and uses `tf.reduce_all` to
compute the result.
Args:
a: array_like. Could be an ndarray, a Tensor or any object that can
be converted to a Tensor using `tf.convert_to_tensor`.
axis: Optional. Could be an int or a tuple of integers. If not specified,
the reduction is performed over all array indices.
keepdims: If true, retains reduced dimensions with length 1.
Returns:
An ndarray. Note that unlike NumPy this does not return a scalar bool if
`axis` is None.
"""
a = asarray(a, dtype=bool)
return utils.tensor_to_ndarray(
tf.reduce_all(input_tensor=a.data, axis=axis, keepdims=keepdims))
示例5: imag
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Tensor [as 别名]
def imag(a):
"""Returns imaginary parts of all elements in `a`.
Uses `tf.imag`.
Args:
a: array_like. Could be an ndarray, a Tensor or any object that can
be converted to a Tensor using `tf.convert_to_tensor`.
Returns:
An ndarray with the same shape as `a`.
"""
a = asarray(a)
# TODO(srbs): np.imag returns a scalar if a is a scalar, whereas we always
# return an ndarray.
return utils.tensor_to_ndarray(tf.math.imag(a.data))
示例6: real
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Tensor [as 别名]
def real(val):
"""Returns real parts of all elements in `a`.
Uses `tf.real`.
Args:
val: array_like. Could be an ndarray, a Tensor or any object that can
be converted to a Tensor using `tf.convert_to_tensor`.
Returns:
An ndarray with the same shape as `a`.
"""
val = asarray(val)
# TODO(srbs): np.real returns a scalar if val is a scalar, whereas we always
# return an ndarray.
return utils.tensor_to_ndarray(tf.math.real(val.data))
示例7: squeeze
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Tensor [as 别名]
def squeeze(a, axis=None):
"""Removes single-element axes from the array.
Args:
a: array_like. Could be an ndarray, a Tensor or any object that can
be converted to a Tensor using `tf.convert_to_tensor`.
axis: scalar or list/tuple of ints.
TODO(srbs): tf.squeeze throws error when axis is a Tensor eager execution
is enabled. So we cannot allow axis to be array_like here. Fix.
Returns:
An ndarray.
"""
a = asarray(a)
return utils.tensor_to_ndarray(tf.squeeze(a, axis))
示例8: result_type
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Tensor [as 别名]
def result_type(*arrays_and_dtypes):
"""Returns the type resulting from applying NumPy type promotion to arguments.
Args:
*arrays_and_dtypes: A list of array_like objects or dtypes.
Returns:
A numpy dtype.
"""
def maybe_get_dtype(x):
# Don't put np.ndarray in this list, because np.result_type looks at the
# value (not just dtype) of np.ndarray to decide the result type.
if isinstance(x, (arrays.ndarray, arrays.ShardedNdArray,
tf.Tensor, tf.IndexedSlices)):
return _to_numpy_type(x.dtype)
elif isinstance(x, tf.DType):
return _to_numpy_type(x)
return x
arrays_and_dtypes = [maybe_get_dtype(x) for x in
tf.nest.flatten(arrays_and_dtypes)]
if not arrays_and_dtypes:
# If arrays_and_dtypes is an empty list, let numpy decide what the dtype is.
arrays_and_dtypes = [np.asarray([])]
return dtypes._result_type(*arrays_and_dtypes)
示例9: hessian
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Tensor [as 别名]
def hessian(function: Callable[[Parameters], tf.Tensor],
parameters: Parameters) -> Parameters:
"""Computes the Hessian of a given function.
Useful for testing, although scales very poorly.
Args:
function: A function for which we want to compute the Hessian.
parameters: Parameters with respect to the Hessian should be computed.
Returns:
A tensor or list of tensors of same nested structure as `Parameters`,
representing the Hessian.
"""
with tf.GradientTape() as outer_tape:
with tf.GradientTape() as inner_tape:
value = function(parameters)
grads = inner_tape.gradient(value, parameters)
grads = tensor_list_util.tensor_list_to_vector(grads)
return outer_tape.jacobian(grads, parameters)
示例10: hessian_as_matrix
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Tensor [as 别名]
def hessian_as_matrix(function: Callable[[Parameters], tf.Tensor],
parameters: Parameters) -> tf.Tensor:
"""Computes the Hessian of a given function.
Same as `hessian`, although return a matrix of size [w_dim, w_dim], where
`w_dim` is the number of parameters, which makes it easier to work with.
Args:
function: A function for which we want to compute the Hessian.
parameters: Parameters with respect to the Hessian should be computed.
Returns:
A tensor of size [w_dim, w_dim] representing the Hessian.
"""
hessian_as_tensor_list = hessian(function, parameters)
hessian_as_tensor_list = [
tf.reshape(e, [e.shape[0], -1]) for e in hessian_as_tensor_list]
return tf.concat(hessian_as_tensor_list, axis=1)
示例11: __init__
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Tensor [as 别名]
def __init__(self,
example_feature_columns,
size_feature_name,
name='generate_mask_layer',
**kwargs):
"""Constructs a mask generator layer.
Args:
example_feature_columns: (dict) example feature names to columns.
size_feature_name: (str) Name of feature for example list sizes. If not
None, this feature name corresponds to a `tf.int32` Tensor of size
[batch_size] corresponding to sizes of example lists. If `None`, all
examples are treated as valid.
name: (str) name of the layer.
**kwargs: keyword arguments.
"""
super(GenerateMask, self).__init__(name=name, **kwargs)
self._example_feature_columns = example_feature_columns
self._size_feature_name = size_feature_name
示例12: call
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Tensor [as 别名]
def call(self, inputs):
"""Generates mask (whether example is valid) from features.
Args:
inputs: (dict) Features with a mix of context (2D) and example features
(3D).
Returns:
mask: (tf.Tensor) Mask is a tensor of shape [batch_size, list_size], which
is True for a valid example and False for invalid one.
"""
example_feature = inputs[next(six.iterkeys(self._example_feature_columns))]
list_size = tf.shape(example_feature)[1]
sizes = inputs[self._size_feature_name]
mask = tf.sequence_mask(sizes, maxlen=list_size)
return mask
示例13: transform
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Tensor [as 别名]
def transform(self, features=None, training=None, mask=None):
"""Transforms the features into dense context features and example features.
The user can overwrite this function for custom transformations.
Mask is provided as an argument so that inherited models can have access
to it for custom feature transformations, without modifying
`call` explicitly.
Args:
features: (dict) with a mix of context (2D) and example features (3D).
training: (bool) whether in train or inference mode.
mask: (tf.Tensor) Mask is a tensor of shape [batch_size, list_size], which
is True for a valid example and False for invalid one.
Returns:
context_features: (dict) context feature names to dense 2D tensors of
shape [batch_size, feature_dims].
example_features: (dict) example feature names to dense 3D tensors of
shape [batch_size, list_size, feature_dims].
"""
del mask
context_features, example_features = self._listwise_dense_layer(
inputs=features, training=training)
return context_features, example_features
示例14: call
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Tensor [as 别名]
def call(self, inputs=None, training=None, mask=None):
"""Defines the forward pass for ranking model.
Args:
inputs: (dict) with a mix of context (2D) and example features (3D).
training: (bool) whether in train or inference mode.
mask: (tf.Tensor) Mask is a tensor of shape [batch_size, list_size], which
is True for a valid example and False for invalid one.
Returns:
(tf.Tensor) A score tensor of shape [batch_size, list_size].
"""
context_features, example_features = self.transform(
features=inputs, training=training, mask=mask)
logits = self.compute_logits(
context_features=context_features,
example_features=example_features,
training=training,
mask=mask)
return logits
示例15: _block_matmul
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Tensor [as 别名]
def _block_matmul(m1, m2):
"""Multiplies block matrices represented as nested lists."""
# Calls itself recursively to multiply blocks, until reaches the level of
# tf.Tensors.
if isinstance(m1, tf.Tensor):
assert isinstance(m2, tf.Tensor)
return tf.matmul(m1, m2)
assert _is_nested_list(m1) and _is_nested_list(m2)
i_max = len(m1)
k_max = len(m2)
j_max = 0 if k_max == 0 else len(m2[0])
if i_max > 0:
assert len(m1[0]) == k_max
def row_by_column(i, j):
return _block_add(*[_block_matmul(m1[i][k], m2[k][j])
for k in range(k_max)])
return [[row_by_column(i, j) for j in range(j_max)] for i in range(i_max)]