本文整理汇总了Python中tensorflow.compat.v1.variable_scope方法的典型用法代码示例。如果您正苦于以下问题:Python v1.variable_scope方法的具体用法?Python v1.variable_scope怎么用?Python v1.variable_scope使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.variable_scope方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _build_aux_head
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import variable_scope [as 别名]
def _build_aux_head(net, end_points, num_classes, hparams, scope):
"""Auxiliary head used for all models across all datasets."""
with tf.variable_scope(scope):
aux_logits = tf.identity(net)
with tf.variable_scope('aux_logits'):
aux_logits = slim.avg_pool2d(
aux_logits, [5, 5], stride=3, padding='VALID')
aux_logits = slim.conv2d(aux_logits, 128, [1, 1], scope='proj')
aux_logits = slim.batch_norm(aux_logits, scope='aux_bn0')
aux_logits = tf.nn.relu(aux_logits)
# Shape of feature map before the final layer.
shape = aux_logits.shape
if hparams.data_format == 'NHWC':
shape = shape[1:3]
else:
shape = shape[2:4]
aux_logits = slim.conv2d(aux_logits, 768, shape, padding='VALID')
aux_logits = slim.batch_norm(aux_logits, scope='aux_bn1')
aux_logits = tf.nn.relu(aux_logits)
aux_logits = contrib_layers.flatten(aux_logits)
aux_logits = slim.fully_connected(aux_logits, num_classes)
end_points['AuxLogits'] = aux_logits
示例2: __init__
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import variable_scope [as 别名]
def __init__(self, tensors):
tensors = list(tensors)
with tf.variable_scope('averaged'):
self._num_samples = tf.Variable(0, name='num_samples', trainable=False)
with tf.variable_scope('avg'):
self._averages = [
tf.get_variable(
tensor.name.replace('/', '-').replace(':', '-'),
tensor.get_shape(), initializer=tf.zeros_initializer(),
trainable=False)
for tensor in tensors]
with tf.variable_scope('save'):
self._saves = [
tf.get_variable(
tensor.name.replace('/', '-').replace(':', '-'),
tensor.get_shape(), initializer=tf.zeros_initializer(),
trainable=False)
for tensor in tensors]
self._tensors = tensors
self._take_sample = self._make_take_sample()
self._switch = self._make_swith_to_average()
self._restore = self._make_restore()
self._reset = self._make_reset()
示例3: layer_norm
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import variable_scope [as 别名]
def layer_norm(x, reduction_indices, epsilon=1e-9, gain=None, bias=None,
per_element=True, scope=None):
"""DOC."""
reduction_indices = ensure_list(reduction_indices)
mean = tf.reduce_mean(x, reduction_indices, keep_dims=True)
variance = tf.reduce_mean(tf.squared_difference(x, mean),
reduction_indices, keep_dims=True)
normalized = (x - mean) / tf.sqrt(variance + epsilon)
dtype = x.dtype
shape = x.get_shape().as_list()
for i in six.moves.range(len(shape)):
if i not in reduction_indices or not per_element:
shape[i] = 1
with tf.variable_scope(scope or 'layer_norm'):
if gain is None:
gain = tf.get_variable('gain', shape=shape, dtype=dtype,
initializer=tf.ones_initializer())
if bias is None:
bias = tf.get_variable('bias', shape=shape, dtype=dtype,
initializer=tf.zeros_initializer())
return gain*normalized+bias
示例4: padded_accuracy_topk
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import variable_scope [as 别名]
def padded_accuracy_topk(predictions,
labels,
k,
weights_fn=common_layers.weights_nonzero):
"""Percentage of times that top-k predictions matches labels on non-0s."""
with tf.variable_scope("padded_accuracy_topk", values=[predictions, labels]):
padded_predictions, padded_labels = common_layers.pad_with_zeros(
predictions, labels)
weights = weights_fn(padded_labels)
effective_k = tf.minimum(k,
common_layers.shape_list(padded_predictions)[-1])
_, outputs = tf.nn.top_k(padded_predictions, k=effective_k)
outputs = tf.to_int32(outputs)
padded_labels = tf.to_int32(padded_labels)
padded_labels = tf.expand_dims(padded_labels, axis=-1)
padded_labels += tf.zeros_like(outputs) # Pad to same shape.
same = tf.to_float(tf.equal(outputs, padded_labels))
same_topk = tf.reduce_sum(same, axis=-1)
return same_topk, weights
示例5: set_precision
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import variable_scope [as 别名]
def set_precision(predictions, labels,
weights_fn=common_layers.weights_nonzero):
"""Precision of set predictions.
Args:
predictions : A Tensor of scores of shape [batch, nlabels].
labels: A Tensor of int32s giving true set elements,
of shape [batch, seq_length].
weights_fn: A function to weight the elements.
Returns:
hits: A Tensor of shape [batch, nlabels].
weights: A Tensor of shape [batch, nlabels].
"""
with tf.variable_scope("set_precision", values=[predictions, labels]):
labels = tf.squeeze(labels, [2, 3])
weights = weights_fn(labels)
labels = tf.one_hot(labels, predictions.shape[-1])
labels = tf.reduce_max(labels, axis=1)
labels = tf.cast(labels, tf.bool)
return tf.to_float(tf.equal(labels, predictions)), weights
示例6: set_recall
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import variable_scope [as 别名]
def set_recall(predictions, labels, weights_fn=common_layers.weights_nonzero):
"""Recall of set predictions.
Args:
predictions : A Tensor of scores of shape [batch, nlabels].
labels: A Tensor of int32s giving true set elements,
of shape [batch, seq_length].
weights_fn: A function to weight the elements.
Returns:
hits: A Tensor of shape [batch, nlabels].
weights: A Tensor of shape [batch, nlabels].
"""
with tf.variable_scope("set_recall", values=[predictions, labels]):
labels = tf.squeeze(labels, [2, 3])
weights = weights_fn(labels)
labels = tf.one_hot(labels, predictions.shape[-1])
labels = tf.reduce_max(labels, axis=1)
labels = tf.cast(labels, tf.bool)
return tf.to_float(tf.equal(labels, predictions)), weights
示例7: softmax_cross_entropy_one_hot
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import variable_scope [as 别名]
def softmax_cross_entropy_one_hot(logits, labels, weights_fn=None):
"""Calculate softmax cross entropy given one-hot labels and logits.
Args:
logits: Tensor of size [batch-size, o=1, p=1, num-classes]
labels: Tensor of size [batch-size, o=1, p=1, num-classes]
weights_fn: Function that takes in labels and weighs examples (unused)
Returns:
cross-entropy (scalar), weights
"""
with tf.variable_scope("softmax_cross_entropy_one_hot",
values=[logits, labels]):
del weights_fn
cross_entropy = tf.losses.softmax_cross_entropy(
onehot_labels=labels, logits=logits)
return cross_entropy, tf.constant(1.0)
示例8: sigmoid_accuracy_one_hot
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import variable_scope [as 别名]
def sigmoid_accuracy_one_hot(logits, labels, weights_fn=None):
"""Calculate accuracy for a set, given one-hot labels and logits.
Args:
logits: Tensor of size [batch-size, o=1, p=1, num-classes]
labels: Tensor of size [batch-size, o=1, p=1, num-classes]
weights_fn: Function that takes in labels and weighs examples (unused)
Returns:
accuracy (scalar), weights
"""
with tf.variable_scope("sigmoid_accuracy_one_hot", values=[logits, labels]):
del weights_fn
predictions = tf.nn.sigmoid(logits)
labels = tf.argmax(labels, -1)
predictions = tf.argmax(predictions, -1)
_, accuracy = tf.metrics.accuracy(labels=labels, predictions=predictions)
return accuracy, tf.constant(1.0)
示例9: sigmoid_precision_one_hot
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import variable_scope [as 别名]
def sigmoid_precision_one_hot(logits, labels, weights_fn=None):
"""Calculate precision for a set, given one-hot labels and logits.
Predictions are converted to one-hot,
as predictions[example][arg-max(example)] = 1
Args:
logits: Tensor of size [batch-size, o=1, p=1, num-classes]
labels: Tensor of size [batch-size, o=1, p=1, num-classes]
weights_fn: Function that takes in labels and weighs examples (unused)
Returns:
precision (scalar), weights
"""
with tf.variable_scope("sigmoid_precision_one_hot", values=[logits, labels]):
del weights_fn
num_classes = logits.shape[-1]
predictions = tf.nn.sigmoid(logits)
predictions = tf.argmax(predictions, -1)
predictions = tf.one_hot(predictions, num_classes)
_, precision = tf.metrics.precision(labels=labels, predictions=predictions)
return precision, tf.constant(1.0)
示例10: sigmoid_recall_one_hot
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import variable_scope [as 别名]
def sigmoid_recall_one_hot(logits, labels, weights_fn=None):
"""Calculate recall for a set, given one-hot labels and logits.
Predictions are converted to one-hot,
as predictions[example][arg-max(example)] = 1
Args:
logits: Tensor of size [batch-size, o=1, p=1, num-classes]
labels: Tensor of size [batch-size, o=1, p=1, num-classes]
weights_fn: Function that takes in labels and weighs examples (unused)
Returns:
recall (scalar), weights
"""
with tf.variable_scope("sigmoid_recall_one_hot", values=[logits, labels]):
del weights_fn
num_classes = logits.shape[-1]
predictions = tf.nn.sigmoid(logits)
predictions = tf.argmax(predictions, -1)
predictions = tf.one_hot(predictions, num_classes)
_, recall = tf.metrics.recall(labels=labels, predictions=predictions)
return recall, tf.constant(1.0)
示例11: sigmoid_cross_entropy_one_hot
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import variable_scope [as 别名]
def sigmoid_cross_entropy_one_hot(logits, labels, weights_fn=None):
"""Calculate sigmoid cross entropy for one-hot lanels and logits.
Args:
logits: Tensor of size [batch-size, o=1, p=1, num-classes]
labels: Tensor of size [batch-size, o=1, p=1, num-classes]
weights_fn: Function that takes in labels and weighs examples (unused)
Returns:
cross_entropy (scalar), weights
"""
with tf.variable_scope("sigmoid_cross_entropy_one_hot",
values=[logits, labels]):
del weights_fn
cross_entropy = tf.losses.sigmoid_cross_entropy(
multi_class_labels=labels, logits=logits)
return cross_entropy, tf.constant(1.0)
示例12: roc_auc
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import variable_scope [as 别名]
def roc_auc(logits, labels, weights_fn=None):
"""Calculate ROC AUC.
Requires binary classes.
Args:
logits: Tensor of size [batch_size, 1, 1, num_classes]
labels: Tensor of size [batch_size, 1, 1, num_classes]
weights_fn: Function that takes in labels and weighs examples (unused)
Returns:
ROC AUC (scalar), weights
"""
del weights_fn
with tf.variable_scope("roc_auc", values=[logits, labels]):
predictions = tf.argmax(logits, axis=-1)
_, auc = tf.metrics.auc(labels, predictions, curve="ROC")
return auc, tf.constant(1.0)
示例13: loss_fn
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import variable_scope [as 别名]
def loss_fn(self, targets, logits):
"""Constructs loss dict.
Args:
targets: [batch_size, seq_len]
logits: [batch_size, seq_len, vocab_size]
Returns:
{str: Tensor of shape []}. Losses.
"""
batch_size, seq_len, vocab_size = common_layers.shape_list(logits)
targets = tf.reshape(targets, [batch_size, seq_len, 1, 1])
logits = tf.reshape(logits, [batch_size, seq_len, 1, 1, vocab_size])
features = copy.copy(self._features)
features["targets"] = targets
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
losses = {
"training": self._t2tmodel.loss(logits, features),
}
return losses
示例14: fprop
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import variable_scope [as 别名]
def fprop(self, x):
if x.name in self._logits_dict:
return self._logits_dict[x.name]
x = tf.map_fn(tf.image.per_image_standardization, x)
self._additional_features['inputs'] = x
if self._scope is None:
scope = tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE)
else:
scope = tf.variable_scope(self._scope, reuse=tf.AUTO_REUSE)
with scope:
logits = self._model_fn(
self._additional_features,
None,
'attack',
params=self._params,
config=self._config)
self._logits_dict[x.name] = logits
return {model.Model.O_LOGITS: tf.reshape(logits, [-1, logits.shape[-1]])}
示例15: _rnn
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import variable_scope [as 别名]
def _rnn(self, inputs, name, initial_state=None, sequence_length=None):
"""A helper method to build tf.nn.dynamic_rnn.
Args:
inputs: The inputs to the RNN. A tensor of shape
[batch_size, max_seq_length, embedding_size]
name: A namespace for the RNN.
initial_state: An optional initial state for the RNN.
sequence_length: An optional sequence length for the RNN.
Returns:
A tf.nn.dynamic_rnn operator.
"""
layers = [self.cell(layer_size)
for layer_size in self._hparams.controller_layer_sizes]
with tf.variable_scope(name):
return tf.nn.dynamic_rnn(
contrib.rnn().MultiRNNCell(layers),
inputs,
initial_state=initial_state,
sequence_length=sequence_length,
dtype=tf.float32,
time_major=False)