本文整理汇总了Python中tensorflow.compat.v1.unstack方法的典型用法代码示例。如果您正苦于以下问题:Python v1.unstack方法的具体用法?Python v1.unstack怎么用?Python v1.unstack使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.unstack方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unstack [as 别名]
def __init__(self, num_experts, gates):
"""Create a SparseDispatcher.
Args:
num_experts: an integer.
gates: a `Tensor` of shape `[batch_size, num_experts]`.
Returns:
a SparseDispatcher
"""
self._gates = gates
self._num_experts = num_experts
where = tf.to_int32(tf.where(tf.transpose(gates) > 0))
self._expert_index, self._batch_index = tf.unstack(where, num=2, axis=1)
self._part_sizes_tensor = tf.reduce_sum(tf.to_int32(gates > 0), [0])
self._nonzero_gates = tf.gather(
tf.reshape(self._gates, [-1]),
self._batch_index * num_experts + self._expert_index)
示例2: combine
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unstack [as 别名]
def combine(self, expert_out, multiply_by_gates=True):
"""Sum together the expert output, multiplied by the corresponding gates.
Args:
expert_out: a list of `num_experts` `Tensor`s, each with shape
`[expert_batch_size_i, <extra_output_dims>]`.
multiply_by_gates: a boolean.
Returns:
a list of num_datashards `Tensor`s with shapes
`[batch_size[d], <extra_output_dims>]`.
"""
expert_part_sizes = tf.unstack(
tf.stack([d.part_sizes for d in self._dispatchers]),
num=self._ep.n,
axis=1)
# list of lists of shape [num_experts][num_datashards]
expert_output_parts = self._ep(tf.split, expert_out, expert_part_sizes)
expert_output_parts_t = transpose_list_of_lists(expert_output_parts)
def my_combine(dispatcher, parts):
return dispatcher.combine(
common_layers.convert_gradient_to_tensor(tf.concat(parts, 0)),
multiply_by_gates=multiply_by_gates)
return self._dp(my_combine, self._dispatchers, expert_output_parts_t)
示例3: get_center_coordinates_and_sizes
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unstack [as 别名]
def get_center_coordinates_and_sizes(self, scope=None):
"""Computes the center coordinates, height and width of the boxes.
Args:
scope: name scope of the function.
Returns:
a list of 4 1-D tensors [ycenter, xcenter, height, width].
"""
with tf.name_scope(scope, 'get_center_coordinates_and_sizes'):
box_corners = self.get()
ymin, xmin, ymax, xmax = tf.unstack(tf.transpose(box_corners))
width = xmax - xmin
height = ymax - ymin
ycenter = ymin + height / 2.
xcenter = xmin + width / 2.
return [ycenter, xcenter, height, width]
示例4: ApplyPhotometricImageDistortionsCheap
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unstack [as 别名]
def ApplyPhotometricImageDistortionsCheap(
images):
"""Apply photometric distortions to the input images.
Args:
images: Tensor of shape [batch_size, h, w, 3] containing a batch of images
to apply the random photometric distortions to. Assumed to be normalized
to range (0, 1), float32 encoding.
Returns:
images: Tensor of shape [batch_size, h, w, 3] containing a batch of images
resulting from applying random photometric distortions to the inputs.
"""
with tf.name_scope('photometric_distortion'):
channels = tf.unstack(images, axis=-1)
# Per-channel random gamma correction.
# Lower gamma = brighter image, decreased contrast.
# Higher gamma = dark image, increased contrast.
gamma_corrected = [c**tf.random_uniform([], 0.5, 1.5) for c in channels]
images = tf.stack(gamma_corrected, axis=-1)
return images
示例5: preprocess
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unstack [as 别名]
def preprocess(self, inputs):
"""Converts a batch of unscaled images to a scale suitable for the model.
This method normalizes the image using the given `channel_means` and
`channels_stds` values at initialization time while optionally flipping
the channel order if `bgr_ordering` is set.
Args:
inputs: a [batch, height, width, channels] float32 tensor
Returns:
outputs: a [batch, height, width, channels] float32 tensor
"""
if self._bgr_ordering:
red, green, blue = tf.unstack(inputs, axis=3)
inputs = tf.stack([blue, green, red], axis=3)
channel_means = tf.reshape(tf.constant(self._channel_means),
[1, 1, 1, -1])
channel_stds = tf.reshape(tf.constant(self._channel_stds),
[1, 1, 1, -1])
return (inputs - channel_means)/channel_stds
示例6: clip_to_window
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unstack [as 别名]
def clip_to_window(keypoints, window, scope=None):
"""Clips keypoints to a window.
This op clips any input keypoints to a window.
Args:
keypoints: a tensor of shape [num_instances, num_keypoints, 2]
window: a tensor of shape [4] representing the [y_min, x_min, y_max, x_max]
window to which the op should clip the keypoints.
scope: name scope.
Returns:
new_keypoints: a tensor of shape [num_instances, num_keypoints, 2]
"""
with tf.name_scope(scope, 'ClipToWindow'):
y, x = tf.split(value=keypoints, num_or_size_splits=2, axis=2)
win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window)
y = tf.maximum(tf.minimum(y, win_y_max), win_y_min)
x = tf.maximum(tf.minimum(x, win_x_max), win_x_min)
new_keypoints = tf.concat([y, x], 2)
return new_keypoints
示例7: clip_to_window
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unstack [as 别名]
def clip_to_window(dp_surface_coords, window, scope=None):
"""Clips DensePose points to a window.
This op clips any input DensePose points to a window.
Args:
dp_surface_coords: a tensor of shape [num_instances, num_points, 4] with
DensePose surface coordinates in (y, x, v, u) format.
window: a tensor of shape [4] representing the [y_min, x_min, y_max, x_max]
window to which the op should clip the keypoints.
scope: name scope.
Returns:
new_dp_surface_coords: a tensor of shape [num_instances, num_points, 4].
"""
with tf.name_scope(scope, 'DensePoseClipToWindow'):
y, x, v, u = tf.split(value=dp_surface_coords, num_or_size_splits=4, axis=2)
win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window)
y = tf.maximum(tf.minimum(y, win_y_max), win_y_min)
x = tf.maximum(tf.minimum(x, win_x_max), win_x_min)
new_dp_surface_coords = tf.concat([y, x, v, u], 2)
return new_dp_surface_coords
示例8: test_tensor_array_unstack
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unstack [as 别名]
def test_tensor_array_unstack():
def run(dtype_str, input_shape, infer_shape):
if package_version.parse(tf.VERSION) >= package_version.parse('1.15.0'):
pytest.skip("Needs fixing for tflite >= 1.15.0")
with tf.Graph().as_default():
dtype = tf_dtypes[dtype_str]
t = tf.constant(np.random.choice([0, 1, 2, 3],
size=input_shape).astype(dtype.name))
ta1 = tf.TensorArray(dtype=dtype, infer_shape=infer_shape, size=input_shape[0])
ta2 = ta1.unstack(t)
out0 = ta2.size()
out1 = ta2.read(0)
compare_tf_with_tvm([], [], 'TensorArraySizeV3:0', mode='debug')
compare_tf_with_tvm([], [], 'TensorArrayReadV3:0', mode='debug')
for dtype in ["float32", "int8"]:
run(dtype, (5,), False)
run(dtype, (5, 5), True)
run(dtype, (5, 5, 5), False)
run(dtype, (5, 5, 5, 5), True)
#######################################################################
# ConcatV2
# --------
示例9: _test_unstack
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unstack [as 别名]
def _test_unstack(ip_shape, axis, dtype):
np_data = np.random.uniform(-5, 5, size=ip_shape).astype(dtype)
tf.reset_default_graph()
with tf.Graph().as_default():
in_data = tf.placeholder(dtype, ip_shape, name="in_data")
unstack = tf.unstack(in_data, axis=axis)
compare_tf_with_tvm([np_data], ['in_data:0'], [n.name for n in unstack])
tf.reset_default_graph()
with tf.Graph().as_default():
in_data = tf.placeholder(dtype, ip_shape, name="in_data")
tf.stack(tf.unstack(in_data, axis=axis), axis=axis)
compare_tf_with_tvm([np_data], ['in_data:0'], 'stack:0')
示例10: _rowwise_unsorted_segment_sum
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unstack [as 别名]
def _rowwise_unsorted_segment_sum(values, indices, n):
"""UnsortedSegmentSum on each row.
Args:
values: a `Tensor` with shape `[batch_size, k]`.
indices: an integer `Tensor` with shape `[batch_size, k]`.
n: an integer.
Returns:
A `Tensor` with the same type as `values` and shape `[batch_size, n]`.
"""
batch, k = tf.unstack(tf.shape(indices), num=2)
indices_flat = tf.reshape(indices, [-1]) + tf.div(tf.range(batch * k), k) * n
ret_flat = tf.unsorted_segment_sum(
tf.reshape(values, [-1]), indices_flat, batch * n)
return tf.reshape(ret_flat, [batch, n])
示例11: universal_transformer_basic
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unstack [as 别名]
def universal_transformer_basic(layer_inputs,
step, hparams,
ffn_unit,
attention_unit):
"""Basic Universal Transformer.
This model is pretty similar to the vanilla transformer in which weights are
shared between layers. For some tasks, this simple idea brings a
generalization that is not achievable by playing with the size of the model
or drop_out parameters in the vanilla transformer.
Args:
layer_inputs:
- state: state
step: indicates number of steps taken so far
hparams: model hyper-parameters
ffn_unit: feed-forward unit
attention_unit: multi-head attention unit
Returns:
layer_output:
new_state: new state
"""
state, inputs, memory = tf.unstack(layer_inputs, num=None, axis=0,
name="unstack")
new_state = step_preprocess(state, step, hparams)
for i in range(hparams.num_inrecurrence_layers):
with tf.variable_scope("rec_layer_%d" % i):
new_state = ffn_unit(attention_unit(new_state))
return new_state, inputs, memory
示例12: visualize_predictions
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unstack [as 别名]
def visualize_predictions(self, real_frames, gen_frames, actions=None):
def concat_on_y_axis(x):
x = tf.unstack(x, axis=1)
x = tf.concat(x, axis=1)
return x
frames_gd = common_video.swap_time_and_batch_axes(real_frames)
frames_pd = common_video.swap_time_and_batch_axes(gen_frames)
if actions is not None:
actions = common_video.swap_time_and_batch_axes(actions)
if self.is_per_pixel_softmax:
frames_pd_shape = common_layers.shape_list(frames_pd)
frames_pd = tf.reshape(frames_pd, [-1, 256])
frames_pd = tf.to_float(tf.argmax(frames_pd, axis=-1))
frames_pd = tf.reshape(frames_pd, frames_pd_shape[:-1] + [3])
frames_gd = concat_on_y_axis(frames_gd)
frames_pd = concat_on_y_axis(frames_pd)
if actions is not None:
actions = tf.clip_by_value(actions, 0, 1)
summary("action_vid", tf.cast(actions * 255, tf.uint8))
actions = concat_on_y_axis(actions)
side_by_side_video = tf.concat([frames_gd, frames_pd, actions], axis=2)
else:
side_by_side_video = tf.concat([frames_gd, frames_pd], axis=2)
tf.summary.image("full_video", side_by_side_video)
示例13: get_extra_loss
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unstack [as 别名]
def get_extra_loss(self, latent_means=None, latent_stds=None,
true_frames=None, gen_frames=None):
"""Gets extra loss from VAE and GAN."""
if not self.is_training:
return 0.0
vae_loss, d_vae_loss, d_gan_loss = 0.0, 0.0, 0.0
# Use sv2p's KL divergence computation.
if self.hparams.use_vae:
vae_loss = super(NextFrameSavpBase, self).get_extra_loss(
latent_means=latent_means, latent_stds=latent_stds)
if self.hparams.use_gan:
# Strip out the first context_frames for the true_frames
# Strip out the first context_frames - 1 for the gen_frames
context_frames = self.hparams.video_num_input_frames
true_frames = tf.stack(
tf.unstack(true_frames, axis=0)[context_frames:])
# discriminator for VAE.
if self.hparams.use_vae:
gen_enc_frames = tf.stack(
tf.unstack(gen_frames, axis=0)[context_frames-1:])
d_vae_loss = self.get_gan_loss(true_frames, gen_enc_frames, name="vae")
# discriminator for GAN.
gen_prior_frames = tf.stack(
tf.unstack(self.gen_prior_video, axis=0)[context_frames-1:])
d_gan_loss = self.get_gan_loss(true_frames, gen_prior_frames, name="gan")
return (
vae_loss + self.hparams.gan_loss_multiplier * d_gan_loss +
self.hparams.gan_vae_loss_multiplier * d_vae_loss)
示例14: video_features
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unstack [as 别名]
def video_features(
self, all_frames, all_actions, all_rewards, all_raw_frames):
"""No video wide feature."""
del all_actions, all_rewards, all_raw_frames
# Concatenate x_{t-1} and x_{t} along depth and encode it to
# produce the mean and standard deviation of z_{t-1}
seq_len = len(all_frames)
image_pairs = tf.concat([all_frames[:seq_len-1],
all_frames[1:seq_len]], axis=-1)
z_mu, z_log_sigma_sq = self.encoder(image_pairs)
# Unstack z_mu and z_log_sigma_sq along the time dimension.
z_mu = tf.unstack(z_mu, axis=0)
z_log_sigma_sq = tf.unstack(z_log_sigma_sq, axis=0)
return [z_mu, z_log_sigma_sq]
示例15: body
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unstack [as 别名]
def body(self, features):
self.has_actions = "input_action" in features
self.has_rewards = "target_reward" in features
self.has_policies = "target_policy" in features
self.has_values = "target_value" in features
hparams = self.hparams
def merge(inputs, targets):
"""Split inputs and targets into lists."""
inputs = tf.unstack(inputs, axis=1)
targets = tf.unstack(targets, axis=1)
assert len(inputs) == hparams.video_num_input_frames
assert len(targets) == hparams.video_num_target_frames
return inputs + targets
frames = merge(features["inputs"], features["targets"])
frames_raw = merge(features["inputs_raw"], features["targets_raw"])
actions, rewards = None, None
if self.has_actions:
actions = merge(features["input_action"], features["target_action"])
if self.has_rewards:
rewards = merge(features["input_reward"], features["target_reward"])
# Reset the internal states if the reset_internal_states has been
# passed as a feature and has greater value than 0.
if self.is_recurrent_model and self.internal_states is not None:
def reset_func():
reset_ops = flat_lists(self.reset_internal_states_ops())
with tf.control_dependencies(reset_ops):
return tf.no_op()
if self.is_predicting and "reset_internal_states" in features:
reset = features["reset_internal_states"]
reset = tf.greater(tf.reduce_sum(reset), 0.5)
reset_ops = tf.cond(reset, reset_func, tf.no_op)
else:
reset_ops = tf.no_op()
with tf.control_dependencies([reset_ops]):
frames[0] = tf.identity(frames[0])
with tf.control_dependencies([frames[0]]):
return self.__process(frames, actions, rewards, frames_raw)