本文整理汇总了Python中tensorflow.compat.v1.unique方法的典型用法代码示例。如果您正苦于以下问题:Python v1.unique方法的具体用法?Python v1.unique怎么用?Python v1.unique使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.unique方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testMergeBoxesWithEmptyInputs
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unique [as 别名]
def testMergeBoxesWithEmptyInputs(self):
def graph_fn():
boxes = tf.zeros([0, 4], dtype=tf.float32)
class_indices = tf.constant([], dtype=tf.int32)
class_confidences = tf.constant([], dtype=tf.float32)
num_classes = 5
merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
ops.merge_boxes_with_multiple_labels(
boxes, class_indices, class_confidences, num_classes))
return (merged_boxes, merged_classes, merged_confidences,
merged_box_indices)
# Running on CPU only as tf.unique is not supported on TPU.
(np_merged_boxes, np_merged_classes, np_merged_confidences,
np_merged_box_indices) = self.execute_cpu(graph_fn, [])
self.assertAllEqual(np_merged_boxes.shape, [0, 4])
self.assertAllEqual(np_merged_classes.shape, [0, 5])
self.assertAllEqual(np_merged_confidences.shape, [0, 5])
self.assertAllEqual(np_merged_box_indices.shape, [0])
示例2: aggregate_sparse_indices
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unique [as 别名]
def aggregate_sparse_indices(indices, values, shape, agg_fn="sum"):
"""Sums values corresponding to repeated indices.
Returns the unique indices and their summed values.
Args:
indices: [num_nnz, rank] Tensor.
values: [num_nnz] Tensor.
shape: [rank] Tensor.
agg_fn: Method to use for aggregation - `sum` or `max`.
Returns:
indices: [num_uniq, rank] Tensor.
values: [num_uniq] Tensor.
"""
# Linearize the indices.
scaling_vec = tf.cumprod(tf.cast(shape, indices.dtype), exclusive=True)
linearized = tf.linalg.matvec(indices, scaling_vec)
# Get the unique indices, and their positions in the array
y, idx = tf.unique(linearized)
# Use the positions of the unique values as the segment ids to
# get the unique values
idx.set_shape([None])
if agg_fn == "sum":
values = tf.unsorted_segment_sum(values, idx, tf.shape(y)[0])
elif agg_fn == "max":
values = tf.unsorted_segment_max(values, idx, tf.shape(y)[0])
# Go back to ND indices
y = tf.expand_dims(y, 1)
indices = tf.floormod(
tf.floordiv(y, tf.expand_dims(scaling_vec, 0)),
tf.cast(tf.expand_dims(shape, 0), indices.dtype))
return indices, values
示例3: select_slate_optimal
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unique [as 别名]
def select_slate_optimal(slate_size, s_no_click, s, q):
"""Selects the slate using exhaustive search.
This algorithm corresponds to the method "OS" in
Ie et al. https://arxiv.org/abs/1905.12767.
Args:
slate_size: int, the size of the recommendation slate.
s_no_click: float tensor, the score for not clicking any document.
s: [num_of_documents] tensor, the scores for clicking documents.
q: [num_of_documents] tensor, the predicted q values for documents.
Returns:
[slate_size] tensor, the selected slate.
"""
num_candidates = s.shape.as_list()[0]
# Obtain all possible slates given current docs in the candidate set.
mesh_args = [list(range(num_candidates))] * slate_size
slates = tf.stack(tf.meshgrid(*mesh_args), axis=-1)
slates = tf.reshape(slates, shape=(-1, slate_size))
# Filter slates that include duplicates to ensure each document is picked
# at most once.
unique_mask = tf.map_fn(
lambda x: tf.equal(tf.size(input=x), tf.size(input=tf.unique(x)[0])),
slates,
dtype=tf.bool)
slates = tf.boolean_mask(tensor=slates, mask=unique_mask)
slate_q_values = tf.gather(s * q, slates)
slate_scores = tf.gather(s, slates)
slate_normalizer = tf.reduce_sum(
input_tensor=slate_scores, axis=1) + s_no_click
slate_q_values = slate_q_values / tf.expand_dims(slate_normalizer, 1)
slate_sum_q_values = tf.reduce_sum(input_tensor=slate_q_values, axis=1)
max_q_slate_index = tf.argmax(input=slate_sum_q_values)
return tf.gather(slates, max_q_slate_index, axis=0)
示例4: testMergeBoxesWithMultipleLabels
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unique [as 别名]
def testMergeBoxesWithMultipleLabels(self):
def graph_fn():
boxes = tf.constant(
[[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75],
[0.25, 0.25, 0.75, 0.75]],
dtype=tf.float32)
class_indices = tf.constant([0, 4, 2], dtype=tf.int32)
class_confidences = tf.constant([0.8, 0.2, 0.1], dtype=tf.float32)
num_classes = 5
merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
ops.merge_boxes_with_multiple_labels(
boxes, class_indices, class_confidences, num_classes))
return (merged_boxes, merged_classes, merged_confidences,
merged_box_indices)
expected_merged_boxes = np.array(
[[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype=np.float32)
expected_merged_classes = np.array(
[[1, 0, 1, 0, 0], [0, 0, 0, 0, 1]], dtype=np.int32)
expected_merged_confidences = np.array(
[[0.8, 0, 0.1, 0, 0], [0, 0, 0, 0, 0.2]], dtype=np.float32)
expected_merged_box_indices = np.array([0, 1], dtype=np.int32)
# Running on CPU only as tf.unique is not supported on TPU.
(np_merged_boxes, np_merged_classes, np_merged_confidences,
np_merged_box_indices) = self.execute_cpu(graph_fn, [])
self.assertAllClose(np_merged_boxes, expected_merged_boxes)
self.assertAllClose(np_merged_classes, expected_merged_classes)
self.assertAllClose(np_merged_confidences, expected_merged_confidences)
self.assertAllClose(np_merged_box_indices, expected_merged_box_indices)
示例5: testMergeBoxesWithMultipleLabelsCornerCase
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unique [as 别名]
def testMergeBoxesWithMultipleLabelsCornerCase(self):
def graph_fn():
boxes = tf.constant(
[[0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1],
[1, 1, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [0, 0, 1, 1]],
dtype=tf.float32)
class_indices = tf.constant([0, 1, 2, 3, 2, 1, 0, 3], dtype=tf.int32)
class_confidences = tf.constant([0.1, 0.9, 0.2, 0.8, 0.3, 0.7, 0.4, 0.6],
dtype=tf.float32)
num_classes = 4
merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
ops.merge_boxes_with_multiple_labels(
boxes, class_indices, class_confidences, num_classes))
return (merged_boxes, merged_classes, merged_confidences,
merged_box_indices)
expected_merged_boxes = np.array(
[[0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]],
dtype=np.float32)
expected_merged_classes = np.array(
[[1, 0, 0, 1], [1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]],
dtype=np.int32)
expected_merged_confidences = np.array(
[[0.1, 0, 0, 0.6], [0.4, 0.9, 0, 0],
[0, 0.7, 0.2, 0], [0, 0, 0.3, 0.8]], dtype=np.float32)
expected_merged_box_indices = np.array([0, 1, 2, 3], dtype=np.int32)
# Running on CPU only as tf.unique is not supported on TPU.
(np_merged_boxes, np_merged_classes, np_merged_confidences,
np_merged_box_indices) = self.execute_cpu(graph_fn, [])
self.assertAllClose(np_merged_boxes, expected_merged_boxes)
self.assertAllClose(np_merged_classes, expected_merged_classes)
self.assertAllClose(np_merged_confidences, expected_merged_confidences)
self.assertAllClose(np_merged_box_indices, expected_merged_box_indices)
示例6: num_matched_rows
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unique [as 别名]
def num_matched_rows(self):
"""Returns number (int32 scalar tensor) of matched rows."""
unique_rows, _ = tf.unique(self.matched_row_indices())
return tf.size(unique_rows)
示例7: compute_unique_class_ids
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unique [as 别名]
def compute_unique_class_ids(class_ids):
"""Computes the unique class IDs of the episode containing `class_ids`.
Args:
class_ids: A 1D tensor representing class IDs, one per example in an
episode.
Returns:
A 1D tensor of the unique class IDs whose size is equal to the way of an
episode.
"""
return tf.unique(class_ids)[0]
示例8: test_shots
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unique [as 别名]
def test_shots(self):
return compute_shot(self.way, self.test_labels)
# TODO(evcu) We should probably calculate way from unique labels, not
# class_ids.
示例9: compute_target_optimal_q
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unique [as 别名]
def compute_target_optimal_q(reward, gamma, next_actions, next_q_values,
next_states, terminals):
"""Builds an op used as a target for the Q-value.
This algorithm corresponds to the method "OT" in
Ie et al. https://arxiv.org/abs/1905.12767..
Args:
reward: [batch_size] tensor, the immediate reward.
gamma: float, discount factor with the usual RL meaning.
next_actions: [batch_size, slate_size] tensor, the next slate.
next_q_values: [batch_size, num_of_documents] tensor, the q values of the
documents in the next step.
next_states: [batch_size, 1 + num_of_documents] tensor, the features for the
user and the docuemnts in the next step.
terminals: [batch_size] tensor, indicating if this is a terminal step.
Returns:
[batch_size] tensor, the target q values.
"""
scores, score_no_click = _get_unnormalized_scores(next_states)
# Obtain all possible slates given current docs in the candidate set.
slate_size = next_actions.get_shape().as_list()[1]
num_candidates = next_q_values.get_shape().as_list()[1]
mesh_args = [list(range(num_candidates))] * slate_size
slates = tf.stack(tf.meshgrid(*mesh_args), axis=-1)
slates = tf.reshape(slates, shape=(-1, slate_size))
# Filter slates that include duplicates to ensure each document is picked
# at most once.
unique_mask = tf.map_fn(
lambda x: tf.equal(tf.size(input=x), tf.size(input=tf.unique(x)[0])),
slates,
dtype=tf.bool)
# [num_of_slates, slate_size]
slates = tf.boolean_mask(tensor=slates, mask=unique_mask)
# [batch_size, num_of_slates, slate_size]
next_q_values_slate = tf.gather(next_q_values, slates, axis=1)
# [batch_size, num_of_slates, slate_size]
scores_slate = tf.gather(scores, slates, axis=1)
# [batch_size, num_of_slates]
batch_size = next_states.get_shape().as_list()[0]
score_no_click_slate = tf.reshape(
tf.tile(score_no_click,
tf.shape(input=slates)[:1]), [batch_size, -1])
# [batch_size, num_of_slates]
next_q_target_slate = tf.reduce_sum(
input_tensor=next_q_values_slate * scores_slate, axis=2) / (
tf.reduce_sum(input_tensor=scores_slate, axis=2) +
score_no_click_slate)
next_q_target_max = tf.reduce_max(input_tensor=next_q_target_slate, axis=1)
return reward + gamma * next_q_target_max * (1. -
tf.cast(terminals, tf.float32))
示例10: process_episode
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import unique [as 别名]
def process_episode(example_strings, class_ids, chunk_sizes, image_size,
support_decoder, query_decoder):
"""Processes an episode.
This function:
1) splits the batch of examples into "flush", "support", and "query" chunks,
2) throws away the "flush" chunk,
3) removes the padded dummy examples from the "support" and "query" chunks,
4) extracts and processes images out of the example strings, and
5) builds support and query targets (numbers from 0 to K-1 where K is the
number of classes in the episode) from the class IDs.
Args:
example_strings: 1-D Tensor of dtype str, tf.train.Example protocol buffers.
class_ids: 1-D Tensor of dtype int, class IDs (absolute wrt the original
dataset).
chunk_sizes: Tuple of ints representing the sizes the flush and additional
chunks.
image_size: int, desired image size used during decoding.
support_decoder: Decoder, used to decode support set images.
query_decoder: Decoder, used to decode query set images.
Returns:
support_images, support_labels, support_class_ids, query_images,
query_labels, query_class_ids: Tensors, batches of images, labels, and
(absolute) class IDs, for the support and query sets (respectively).
"""
# TODO(goroshin): Replace with `support_decoder.log_summary(name='support')`.
# TODO(goroshin): Eventually remove setting the image size here and pass it
# to the ImageDecoder constructor instead.
if isinstance(support_decoder, decoder.ImageDecoder):
log_data_augmentation(support_decoder.data_augmentation, 'support')
support_decoder.image_size = image_size
if isinstance(query_decoder, decoder.ImageDecoder):
log_data_augmentation(query_decoder.data_augmentation, 'query')
query_decoder.image_size = image_size
(support_strings, support_class_ids), (query_strings, query_class_ids) = \
flush_and_chunk_episode(example_strings, class_ids, chunk_sizes)
support_images = tf.map_fn(
support_decoder,
support_strings,
dtype=support_decoder.out_type,
back_prop=False)
query_images = tf.map_fn(
query_decoder,
query_strings,
dtype=query_decoder.out_type,
back_prop=False)
# Convert class IDs into labels in [0, num_ways).
_, support_labels = tf.unique(support_class_ids)
_, query_labels = tf.unique(query_class_ids)
return (support_images, support_labels, support_class_ids, query_images,
query_labels, query_class_ids)