本文整理汇总了Python中tensorflow.compat.v1.trainable_variables方法的典型用法代码示例。如果您正苦于以下问题:Python v1.trainable_variables方法的具体用法?Python v1.trainable_variables怎么用?Python v1.trainable_variables使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.trainable_variables方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: trainable_variables_on_device
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import trainable_variables [as 别名]
def trainable_variables_on_device(self, rel_device_num, abs_device_num,
writable):
"""Return the set of trainable variables on the specified device.
Args:
rel_device_num: local worker device index.
abs_device_num: global graph device index.
writable: whether the returned variables is writable or read-only.
Returns:
Return the set of trainable variables on the specified device.
"""
del abs_device_num
params_refs = tf.trainable_variables()
if writable:
return params_refs
params = []
for param in params_refs:
var_name = param.name.split(':')[0]
_, var_get_op = self.variable_mgr.staging_vars_on_devices[rel_device_num][
var_name]
params.append(var_get_op)
return params
示例2: trainable_variables_on_device
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import trainable_variables [as 别名]
def trainable_variables_on_device(self,
rel_device_num,
abs_device_num,
writable=False):
"""Return the set of trainable variables on device.
Args:
rel_device_num: local worker device index.
abs_device_num: global graph device index.
writable: whether to get a reference to the underlying variable.
Returns:
The set of trainable variables on the specified device.
"""
del rel_device_num, writable
if self.each_tower_has_variables():
params = [
v for v in tf.trainable_variables()
if v.name.startswith('v%s/' % abs_device_num)
]
else:
params = tf.trainable_variables()
return params
示例3: savable_variables
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import trainable_variables [as 别名]
def savable_variables(self):
"""Returns a list/dict of savable variables to pass to tf.train.Saver."""
params = {}
for v in tf.global_variables():
assert (v.name.startswith(variable_mgr_util.PS_SHADOW_VAR_PREFIX + '/v0/')
or v.name in ('global_step:0', 'loss_scale:0',
'loss_scale_normal_steps:0')), (
'Invalid global variable: %s' % v)
# We store variables in the checkpoint with the shadow variable prefix
# removed so we can evaluate checkpoints in non-distributed replicated
# mode. The checkpoints can also be loaded for training in
# distributed_replicated mode.
name = self._strip_port(self._remove_shadow_var_prefix_if_present(v.name))
params[name] = v
for v in tf.local_variables():
# Non-trainable variables, such as batch norm moving averages, do not have
# corresponding global shadow variables, so we add them here. Trainable
# local variables have corresponding global shadow variables, which were
# added in the global variable loop above.
if v.name.startswith('v0/') and v not in tf.trainable_variables():
params[self._strip_port(v.name)] = v
return params
示例4: find_var
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import trainable_variables [as 别名]
def find_var(name, vars_=None):
"""Find a variable by name or return None.
Args:
name: The name of the variable (full qualified with all
enclosing scopes).
vars_: The variables among which to search. Defaults to all
trainable variables.
Returns:
The [first] variable with `name` among `vars_` or None if there
is no match.
"""
if vars_ is None:
vars_ = tf.trainable_variables()
return next((var for var in vars_ if var.name == name),
None)
示例5: _load_checkpoint
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import trainable_variables [as 别名]
def _load_checkpoint(checkpoint_filename, extra_vars, trainable_only=False):
if tf.gfile.IsDirectory(checkpoint_filename):
checkpoint_filename = tf.train.latest_checkpoint(checkpoint_filename)
logging.info('Loading checkpoint %s', checkpoint_filename)
saveables = (tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) +
tf.get_collection(tf.GraphKeys.SAVEABLE_OBJECTS))
if trainable_only:
saveables = list(set(saveables) & set(tf.trainable_variables()))
# Try to restore all saveables, if that fails try without extra_vars.
try:
saver = tf.train.Saver(var_list=saveables)
saver.restore(tf.get_default_session(), checkpoint_filename)
except (ValueError, tf.errors.NotFoundError):
logging.info('Missing key in checkpoint. Trying old checkpoint format.')
saver = tf.train.Saver(var_list=list(set(saveables) - set(extra_vars)))
saver.restore(tf.get_default_session(), checkpoint_filename)
示例6: weight_decay_and_noise
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import trainable_variables [as 别名]
def weight_decay_and_noise(loss, hparams, learning_rate, var_list=None):
"""Apply weight decay and weight noise."""
if var_list is None:
var_list = tf.trainable_variables()
decay_vars = [v for v in var_list]
noise_vars = [v for v in var_list if "/body/" in v.name]
weight_decay_loss = weight_decay(hparams.weight_decay, decay_vars)
if hparams.weight_decay and common_layers.should_generate_summaries():
tf.summary.scalar("losses/weight_decay", weight_decay_loss)
weight_noise_ops = weight_noise(hparams.weight_noise, learning_rate,
noise_vars)
with tf.control_dependencies(weight_noise_ops):
loss = tf.identity(loss)
loss += weight_decay_loss
return loss
示例7: summarize_variables
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import trainable_variables [as 别名]
def summarize_variables(var_list=None, tag=None):
"""Summarize the variables.
Args:
var_list: a list of variables; defaults to trainable_variables.
tag: name scope of the summary; defaults to training_variables/.
"""
if var_list is None:
var_list = tf.trainable_variables()
if tag is None:
tag = "training_variables/"
name_to_var = {v.name: v for v in var_list}
for v_name in list(name_to_var):
v = name_to_var[v_name]
tf.summary.histogram(tag + v_name, v)
示例8: test_adam
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import trainable_variables [as 别名]
def test_adam(self):
with self.test_session() as sess:
w = tf.get_variable(
"w",
shape=[3],
initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
x = tf.constant([0.4, 0.2, -0.5])
loss = tf.reduce_mean(tf.square(x - w))
tvars = tf.trainable_variables()
grads = tf.gradients(loss, tvars)
global_step = tf.train.get_or_create_global_step()
optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
train_op = optimizer.apply_gradients(list(zip(grads, tvars)), global_step)
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
sess.run(init_op)
for _ in range(100):
sess.run(train_op)
w_np = sess.run(w)
self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2)
示例9: testCompatibleNames
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import trainable_variables [as 别名]
def testCompatibleNames(self):
with self.session(use_gpu=True, graph=tf.Graph()):
cell = rnn_cell.LSTMCell(10)
pcell = rnn_cell.LSTMCell(10, use_peepholes=True)
inputs = [tf.zeros([4, 5])] * 6
tf.nn.static_rnn(cell, inputs, dtype=tf.float32, scope="basic")
tf.nn.static_rnn(pcell, inputs, dtype=tf.float32, scope="peephole")
basic_names = {
v.name: v.get_shape()
for v in tf.trainable_variables()
}
with self.session(use_gpu=True, graph=tf.Graph()):
cell = contrib_rnn.LSTMBlockCell(10)
pcell = contrib_rnn.LSTMBlockCell(10, use_peephole=True)
inputs = [tf.zeros([4, 5])] * 6
tf.nn.static_rnn(cell, inputs, dtype=tf.float32, scope="basic")
tf.nn.static_rnn(pcell, inputs, dtype=tf.float32, scope="peephole")
block_names = {
v.name: v.get_shape()
for v in tf.trainable_variables()
}
self.assertEqual(basic_names, block_names)
示例10: _test_model_params
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import trainable_variables [as 别名]
def _test_model_params(self,
model_name,
input_size,
expected_params,
override_params=None,
features_only=False,
pooled_features_only=False):
images = tf.zeros((1, input_size, input_size, 3), dtype=tf.float32)
efficientnet_builder.build_model(
images,
model_name=model_name,
override_params=override_params,
training=True,
features_only=features_only,
pooled_features_only=pooled_features_only)
num_params = np.sum([np.prod(v.shape) for v in tf.trainable_variables()])
self.assertEqual(num_params, expected_params)
示例11: _test_model_params
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import trainable_variables [as 别名]
def _test_model_params(self,
model_name,
input_size,
expected_params,
override_params=None,
features_only=False,
pooled_features_only=False):
images = tf.zeros((1, input_size, input_size, 3), dtype=tf.float32)
efficientnet_lite_builder.build_model(
images,
model_name=model_name,
override_params=override_params,
training=True,
features_only=features_only,
pooled_features_only=pooled_features_only)
num_params = np.sum([np.prod(v.shape) for v in tf.trainable_variables()])
self.assertEqual(num_params, expected_params)
示例12: test_inner_loop_reuse
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import trainable_variables [as 别名]
def test_inner_loop_reuse(self, learn_inner_lr):
# Inner loop should create as many trainable vars in 'inner_loop' scope as a
# direct call to inference_network_fn would. Learned learning rates and
# learned loss variables should be created *outside* the 'inner_loop' scope
# since they do not adapt.
graph = tf.Graph()
with tf.Session(graph=graph):
inputs = create_inputs()
features, _ = inputs
# Record how many trainable vars a call to inference_network_fn creates.
with tf.variable_scope('test_scope'):
inference_network_fn(features)
expected_num_train_vars = len(tf.trainable_variables(scope='test_scope'))
maml_inner_loop_instance = maml_inner_loop.MAMLInnerLoopGradientDescent(
learning_rate=LEARNING_RATE, learn_inner_lr=learn_inner_lr)
maml_inner_loop_instance.inner_loop(
[inputs, inputs, inputs],
inference_network_fn,
learned_model_train_fn)
num_train_vars = len(tf.trainable_variables(scope='inner_loop'))
self.assertEqual(expected_num_train_vars, num_train_vars)
示例13: initialize_networks
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import trainable_variables [as 别名]
def initialize_networks(self):
model_vars = tf.trainable_variables()
self.saver = tf.train.Saver(model_vars)
# Set up directory for saving models
self.model_dir = os.getcwd() + '/models'
self.model_loc = self.model_dir + '/HAC.ckpt'
if not os.path.exists(self.model_dir):
os.makedirs(self.model_dir)
# Initialize actor/critic networks
self.sess.run(tf.global_variables_initializer())
# If not retraining, restore weights
# if we are not retraining from scratch, just restore weights
if self.FLAGS.retrain == False:
self.saver.restore(self.sess, tf.train.latest_checkpoint(self.model_dir))
# Save neural network parameters
示例14: restore_model
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import trainable_variables [as 别名]
def restore_model(sess, checkpoint_path, enable_ema=True):
"""Restore variables from the checkpoint into the provided session.
Args:
sess: A tensorflow session where the checkpoint will be loaded.
checkpoint_path: Path to the trained checkpoint.
enable_ema: (optional) Whether to load the exponential moving average (ema)
version of the tensorflow variables. Defaults to True.
"""
if enable_ema:
ema = tf.train.ExponentialMovingAverage(decay=0.0)
ema_vars = tf.trainable_variables() + tf.get_collection("moving_vars")
for v in tf.global_variables():
if "moving_mean" in v.name or "moving_variance" in v.name:
ema_vars.append(v)
ema_vars = list(set(ema_vars))
var_dict = ema.variables_to_restore(ema_vars)
else:
var_dict = None
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(var_dict, max_to_keep=1)
saver.restore(sess, checkpoint_path)
示例15: testCreateLogisticClassifier
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import trainable_variables [as 别名]
def testCreateLogisticClassifier(self):
g = tf.Graph()
with g.as_default():
tf.set_random_seed(0)
tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
tf_labels = tf.constant(self._labels, dtype=tf.float32)
model_fn = LogisticClassifier
clone_args = (tf_inputs, tf_labels)
deploy_config = model_deploy.DeploymentConfig(num_clones=1)
self.assertEqual(slim.get_variables(), [])
clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
self.assertEqual(len(slim.get_variables()), 2)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
self.assertEqual(update_ops, [])
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0)
total_loss, grads_and_vars = model_deploy.optimize_clones(clones,
optimizer)
self.assertEqual(len(grads_and_vars), len(tf.trainable_variables()))
self.assertEqual(total_loss.op.name, 'total_loss')
for g, v in grads_and_vars:
self.assertDeviceEqual(g.device, 'GPU:0')
self.assertDeviceEqual(v.device, 'CPU:0')