本文整理汇总了Python中tensorflow.compat.v1.tensordot方法的典型用法代码示例。如果您正苦于以下问题:Python v1.tensordot方法的具体用法?Python v1.tensordot怎么用?Python v1.tensordot使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.tensordot方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: last_dim_weighted_sum
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import tensordot [as 别名]
def last_dim_weighted_sum(x, weight_name, weight_init=None, keepdims=False):
"""Computes a weighted sum of the last dimension of `x`.
Args:
x: <float32>[..., x_dim]
weight_name: Name of the weight variable to use
weight_init: Initializer of the weight variable
keepdims: Whether the output should hav an ending size one dim
Returns:
summed: <float32>[...] or <float32>[..., 1] iff `keepdims`
"""
dim = x.shape.as_list()[-1]
w = tf.get_variable(weight_name, dim, initializer=weight_init)
out = tf.tensordot(x, w, [[len(x.shape) - 1], [0]])
if keepdims:
return tf.expand_dims(out, len(out.shape))
else:
return out
示例2: cumsum
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import tensordot [as 别名]
def cumsum(x, axis=0, exclusive=False):
"""TPU hack for tf.cumsum.
This is equivalent to tf.cumsum and is faster on TPU as of 04/2018 unless
the axis dimension is very large.
Args:
x: a Tensor
axis: an integer
exclusive: a boolean
Returns:
Tensor of the same shape as x.
"""
if not is_xla_compiled():
return tf.cumsum(x, axis=axis, exclusive=exclusive)
x_shape = shape_list(x)
rank = len(x_shape)
length = x_shape[axis]
my_range = tf.range(length)
comparator = tf.less if exclusive else tf.less_equal
mask = tf.cast(
comparator(tf.expand_dims(my_range, 1), tf.expand_dims(my_range, 0)),
x.dtype)
ret = tf.tensordot(x, mask, axes=[[axis], [0]])
if axis != rank - 1:
ret = tf.transpose(
ret,
list(range(axis)) + [rank - 1] + list(range(axis, rank - 1)))
return ret
示例3: specgrams_to_melspecgrams
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import tensordot [as 别名]
def specgrams_to_melspecgrams(self, specgrams):
"""Converts specgrams to melspecgrams.
Args:
specgrams: Tensor of log magnitudes and instantaneous frequencies,
shape [batch, time, freq, 2].
Returns:
melspecgrams: Tensor of log magnitudes and instantaneous frequencies,
shape [batch, time, freq, 2], mel scaling of frequencies.
"""
if self._mel_downscale is None:
return specgrams
logmag = specgrams[:, :, :, 0]
p = specgrams[:, :, :, 1]
mag2 = tf.exp(2.0 * logmag)
phase_angle = tf.cumsum(p * np.pi, axis=-2)
l2mel = tf.to_float(self._linear_to_mel_matrix())
logmelmag2 = self._safe_log(tf.tensordot(mag2, l2mel, 1))
mel_phase_angle = tf.tensordot(phase_angle, l2mel, 1)
mel_p = spectral_ops.instantaneous_frequency(mel_phase_angle)
return tf.concat(
[logmelmag2[:, :, :, tf.newaxis], mel_p[:, :, :, tf.newaxis]], axis=-1)
示例4: melspecgrams_to_specgrams
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import tensordot [as 别名]
def melspecgrams_to_specgrams(self, melspecgrams):
"""Converts melspecgrams to specgrams.
Args:
melspecgrams: Tensor of log magnitudes and instantaneous frequencies,
shape [batch, time, freq, 2], mel scaling of frequencies.
Returns:
specgrams: Tensor of log magnitudes and instantaneous frequencies,
shape [batch, time, freq, 2].
"""
if self._mel_downscale is None:
return melspecgrams
logmelmag2 = melspecgrams[:, :, :, 0]
mel_p = melspecgrams[:, :, :, 1]
mel2l = tf.to_float(self._mel_to_linear_matrix())
mag2 = tf.tensordot(tf.exp(logmelmag2), mel2l, 1)
logmag = 0.5 * self._safe_log(mag2)
mel_phase_angle = tf.cumsum(mel_p * np.pi, axis=-2)
phase_angle = tf.tensordot(mel_phase_angle, mel2l, 1)
p = spectral_ops.instantaneous_frequency(phase_angle)
return tf.concat(
[logmag[:, :, :, tf.newaxis], p[:, :, :, tf.newaxis]], axis=-1)
示例5: combine_q_functions
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import tensordot [as 别名]
def combine_q_functions(q_functions, transform_strategy, **kwargs):
"""Utility function for combining multiple Q functions.
Args:
q_functions: Multiple Q-functions concatenated.
transform_strategy: str, Possible options include (1) 'IDENTITY' for no
transformation (2) 'STOCHASTIC' for random convex combination.
**kwargs: Arbitrary keyword arguments. Used for passing `transform_matrix`,
the matrix for transforming the Q-values if the passed
`transform_strategy` is `STOCHASTIC`.
Returns:
q_functions: Modified Q-functions.
q_values: Q-values based on combining the multiple heads.
"""
# Create q_values before reordering the heads for training
q_values = tf.reduce_mean(q_functions, axis=-1)
if transform_strategy == 'STOCHASTIC':
left_stochastic_matrix = kwargs.get('transform_matrix')
if left_stochastic_matrix is None:
raise ValueError('None value provided for stochastic matrix')
q_functions = tf.tensordot(
q_functions, left_stochastic_matrix, axes=[[2], [0]])
elif transform_strategy == 'IDENTITY':
tf.logging.info('Identity transformation Q-function heads')
else:
raise ValueError(
'{} is not a valid reordering strategy'.format(transform_strategy))
return q_functions, q_values
示例6: _build_networks
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import tensordot [as 别名]
def _build_networks(self):
super(MultiNetworkDQNAgent, self)._build_networks()
# q_argmax is only used for picking an action
self._q_argmax_eval = tf.argmax(self._net_outputs.q_values, axis=1)[0]
if self.use_deep_exploration:
if self.transform_strategy.endswith('STOCHASTIC'):
q_transform = atari_helpers.random_stochastic_matrix(
self.num_networks, num_cols=1)
self._q_episode_transform = tf.get_variable(
trainable=False,
dtype=tf.float32,
shape=q_transform.get_shape().as_list(),
name='q_episode_transform')
self._update_episode_q_function = self._q_episode_transform.assign(
q_transform)
episode_q_function = tf.tensordot(
self._net_outputs.unordered_q_networks,
self._q_episode_transform, axes=[[2], [0]])
self._q_argmax_train = tf.argmax(episode_q_function[:, :, 0], axis=1)[0]
elif self.transform_strategy == 'IDENTITY':
self._q_function_index = tf.Variable(
initial_value=0,
trainable=False,
dtype=tf.int32,
shape=(),
name='q_head_episode')
self._update_episode_q_function = self._q_function_index.assign(
tf.random.uniform(
shape=(), maxval=self.num_networks, dtype=tf.int32))
q_function = self._net_outputs.unordered_q_networks[
:, :, self._q_function_index]
# This is only used for picking an action
self._q_argmax_train = tf.argmax(q_function, axis=1)[0]
else:
self._q_argmax_train = self._q_argmax_eval
示例7: apply_linear
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import tensordot [as 别名]
def apply_linear(self, wrapper, w, b):
"""Propagate CROWN bounds backward through a linear layer."""
def _linear_propagate(bound):
"""Propagate one side of the bound."""
new_bound_w = tf.einsum('nsk,lk->nsl', bound.w, w)
if b is not None:
bias = tf.tensordot(bound.w, b, axes=1)
return fastlin.LinearExpression(w=new_bound_w, b=bias + bound.b,
lower=wrapper.input_bounds.lower,
upper=wrapper.input_bounds.upper)
ub_expr = _linear_propagate(self.upper) if self.upper else None
lb_expr = _linear_propagate(self.lower) if self.lower else None
return BackwardBounds(lb_expr, ub_expr)
示例8: apply_conv2d
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import tensordot [as 别名]
def apply_conv2d(self, wrapper, w, b, padding, strides):
"""Propagate CROWN bounds backward through a convolution layer."""
def _conv2d_propagate(bound):
"""Propagate one side of the bound."""
s = tf.shape(bound.w)
# Variable bound.w has shape (batch_size, num_specs, H, W, C),
# resize it to (batch_size * num_specs, H, W, C) for batch processing.
effective_batch_size = tf.reshape(s[0] * s[1], [1])
batched_shape = tf.concat([effective_batch_size, s[2:]], 0)
# The output of a deconvolution is the input shape of the corresponding
# convolution.
output_shape = wrapper.input_bounds.lower.shape
batched_output_shape = tf.concat([effective_batch_size, output_shape[1:]],
0)
# Batched transpose convolution for efficiency.
bound_batch = tf.nn.conv2d_transpose(tf.reshape(bound.w, batched_shape),
filter=w,
output_shape=batched_output_shape,
strides=[1] + list(strides) + [1],
padding=padding)
# Reshape results to (batch_size, num_specs, new_H, new_W, new_C).
new_shape = tf.concat(
[tf.reshape(s[0], [1]), tf.reshape(s[1], [1]), output_shape[1:]], 0)
new_bound_w = tf.reshape(bound_batch, new_shape)
# If this convolution has bias, multiplies it with current w.
bias = 0
if b is not None:
# Variable bound.w has dimension (batch_size, num_specs, H, W, C),
# accumulate H and W, and do a dot product for each channel C.
bias = tf.tensordot(tf.reduce_sum(bound.w, [2, 3]), b, axes=1)
return fastlin.LinearExpression(w=new_bound_w, b=bias + bound.b,
lower=wrapper.input_bounds.lower,
upper=wrapper.input_bounds.upper)
ub_expr = _conv2d_propagate(self.upper) if self.upper else None
lb_expr = _conv2d_propagate(self.lower) if self.lower else None
return BackwardBounds(lb_expr, ub_expr)
示例9: apply_linear
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import tensordot [as 别名]
def apply_linear(self, wrapper, w, b):
mapped_centres = tf.matmul(self.nominal, w)
mapped_vertices = tf.tensordot(self.vertices, w, axes=1)
lb, ub = _simplex_bounds(mapped_vertices, mapped_centres, self.r, -2)
nominal_out = tf.matmul(self.nominal, w)
if b is not None:
nominal_out += b
return relative_bounds.RelativeIntervalBounds(lb, ub, nominal_out)
示例10: _scale_expression
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import tensordot [as 别名]
def _scale_expression(expr, w):
"""Scale a linear expression by w."""
b = tf.matmul(expr.b, w)
w = tf.tensordot(expr.w, w, axes=1)
return LinearExpression(w=w, b=b, lower=expr.lower, upper=expr.upper)
示例11: _get_bert_embeddings
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import tensordot [as 别名]
def _get_bert_embeddings(model, layers_to_use, aggregation_fn, name="bert"):
"""Extract embeddings from BERT model."""
all_hidden = model.get_all_encoder_layers()
layers_hidden = [all_hidden[i] for i in layers_to_use]
hidden_shapes = [
modeling.get_shape_list(hid, expected_rank=3) for hid in all_hidden
]
if len(layers_hidden) == 1:
hidden_emb = layers_hidden[0]
hidden_size = hidden_shapes[0][2]
elif aggregation_fn == "concat":
hidden_emb = tf.concat(layers_hidden, 2)
hidden_size = sum([hidden_shapes[i][2] for i in layers_to_use])
elif aggregation_fn == "average":
hidden_size = hidden_shapes[0][2]
assert all([shape[2] == hidden_size for shape in hidden_shapes
]), hidden_shapes
hidden_emb = tf.add_n(layers_hidden) / len(layers_hidden)
elif aggregation_fn == "attention":
hidden_size = hidden_shapes[0][2]
mixing_weights = tf.get_variable(
name + "/mixing/weights", [len(layers_hidden)],
initializer=tf.zeros_initializer())
mixing_scores = tf.nn.softmax(mixing_weights)
hidden_emb = tf.tensordot(
tf.stack(layers_hidden, axis=-1), mixing_scores, [[-1], [0]])
else:
raise ValueError("Unrecognized aggregation function %s." % aggregation_fn)
return hidden_emb, hidden_size
示例12: affine
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import tensordot [as 别名]
def affine(x, output_size, weight_name, bias_name=None, weight_init=None):
"""Affine transformation of the input `x`.
Args:
x: <float32>[..., x_dim]
output_size: size of the last output dimension
weight_name: Name of the weight variable to use
bias_name: Name for the bias variable, if one should be used
weight_init: Initializer of the weight variable
Returns:
transformed <float32>[..., `output_size`]
"""
dim = x.shape.as_list()[-1]
w = tf.get_variable(
weight_name, (dim, output_size), tf.float32, initializer=weight_init)
out = tf.tensordot(x, w, [[len(x.shape) - 1], [0]])
if bias_name:
b = tf.get_variable(
bias_name, (output_size,),
tf.float32,
initializer=tf.zeros_initializer())
for _ in range(len(out.shape) - 1):
b = tf.expand_dims(b, 0)
out += b
return out
示例13: test_simple
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import tensordot [as 别名]
def test_simple(self):
def graph_fn(tensora, tensorb):
return tf.tensordot(tensora, tensorb, axes=1)
tensora_np = np.ones(20)
tensorb_np = tensora_np * 2
output = self.execute(graph_fn, [tensora_np, tensorb_np])
self.assertAllClose(output, 40.0)
示例14: real_svg_loss
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import tensordot [as 别名]
def real_svg_loss(top_out, targets, model_hparams, unused_vocab_size,
unused_weights_fn):
"""Computes loss for svg decoder model."""
# targets already come in 10-dim mode, no need to so any mdn stuff
# obviously.
targets_commands_rel = targets[..., :4]
targets_args_rel = targets[..., 4:]
with tf.variable_scope('full_command_loss'):
num_mix = model_hparams.num_mixture
commands = top_out[:, :, :, :4]
args = top_out[:, :, :, 4:]
# args are [batch, seq, 1, 6*3*num_mix]. want [batch * seq * 6, 3*num_mix]
args = tf.reshape(args, [-1, 3 * num_mix])
out_logmix, out_mean, out_logstd = _get_mdn_coef(args)
# before we compute mdn_args_loss, we need to create a mask for elements
# to ignore on it.
# create mask
masktemplate = tf.constant([[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 1.],
[0., 0., 0., 0., 1., 1.],
[1., 1., 1., 1., 1., 1.]])
mask = tf.tensordot(targets_commands_rel, masktemplate, [[-1], [-2]])
# calculate mdn loss, which auto masks it out
targs_flat = tf.reshape(targets_args_rel, [-1, 1])
mdn_loss = _get_mdn_loss(out_logmix, out_mean, out_logstd, targs_flat, mask,
model_hparams.dont_reduce_loss)
# we dont have to manually mask out the softmax xent loss because
# internally, each dimention of the xent loss is multiplied by the
# given probability in the label for that dim. So for a one-hot label [0,
# 1, 0] the xent loss between logit[0] and label[0] are multiplied by 0,
# whereas between logit[1] and label[1] are multiplied by 1. Because our
# targets_commands_rel is all 0s for the padding, sofmax_xent_loss is 0
# for those elements as well.
softmax_xent_loss = tf.nn.softmax_cross_entropy_with_logits(
labels=targets_commands_rel, logits=commands)
# Accumulate losses
if model_hparams.dont_reduce_loss:
softmax_xent_loss = tf.reduce_mean(softmax_xent_loss, [1, 2])
else:
softmax_xent_loss = tf.reduce_mean(softmax_xent_loss)
loss = (model_hparams.mdn_k * mdn_loss +
model_hparams.soft_k * softmax_xent_loss)
global _summarized_losses
if not _summarized_losses:
with tf.name_scope(None), tf.name_scope('losses_command'):
tf.summary.scalar('mdn_loss', mdn_loss)
tf.summary.scalar('softmax_xent_loss', softmax_xent_loss)
# this tells us not to re-create the summary ops
_summarized_losses = True
return loss, tf.constant(1.0)
示例15: _build_graph
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import tensordot [as 别名]
def _build_graph(self, vocab, initial_embedding_dict):
"""Builds the computatation graph.
Parameters
------------
vocab : Iterable
initial_embedding_dict : dict
"""
# Constants
self.ones = tf.ones([self.n_words, 1])
# Parameters:
if initial_embedding_dict is None:
# Ordinary GloVe
self.W = self._weight_init(self.n_words, self.n, 'W')
self.C = self._weight_init(self.n_words, self.n, 'C')
else:
# This is the case where we have values to use as a
# "warm start":
self.n = len(next(iter(initial_embedding_dict.values())))
W = randmatrix(len(vocab), self.n)
C = randmatrix(len(vocab), self.n)
self.original_embedding = np.zeros((len(vocab), self.n))
self.has_embedding = np.zeros(len(vocab))
for i, w in enumerate(vocab):
if w in initial_embedding_dict:
self.has_embedding[i] = 1.0
embedding = np.array(initial_embedding_dict[w])
self.original_embedding[i] = embedding
# Divide the original embedding into W and C,
# plus some noise to break the symmetry that would
# otherwise cause both gradient updates to be
# identical.
W[i] = 0.5 * embedding + noise(self.n)
C[i] = 0.5 * embedding + noise(self.n)
self.W = tf.Variable(W, name='W', dtype=tf.float32)
self.C = tf.Variable(C, name='C', dtype=tf.float32)
self.original_embedding = tf.constant(self.original_embedding,
dtype=tf.float32)
self.has_embedding = tf.constant(self.has_embedding,
dtype=tf.float32)
# This is for testing. It differs from
# `self.original_embedding` only in that it includes the
# random noise we added above to break the symmetry.
self.G_start = W + C
self.bw = self._weight_init(self.n_words, 1, 'bw')
self.bc = self._weight_init(self.n_words, 1, 'bc')
self.model = tf.tensordot(self.W, tf.transpose(self.C), axes=1) + \
tf.tensordot(self.bw, tf.transpose(self.ones), axes=1) + \
tf.tensordot(self.ones, tf.transpose(self.bc), axes=1)