本文整理汇总了Python中tensorflow.compat.v1.stop_gradient方法的典型用法代码示例。如果您正苦于以下问题:Python v1.stop_gradient方法的具体用法?Python v1.stop_gradient怎么用?Python v1.stop_gradient使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.stop_gradient方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: mask_from_lengths
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import stop_gradient [as 别名]
def mask_from_lengths(lengths, max_length=None, dtype=None, name=None):
"""Convert a length scalar to a vector of binary masks.
This function will convert a vector of lengths to a matrix of binary masks.
E.g. [2, 4, 3] will become [[1, 1, 0, 0], [1, 1, 1, 1], [1, 1, 1, 0]]
Args:
lengths: a d-dimensional vector of integers corresponding to lengths.
max_length: an optional (default: None) scalar-like or 0-dimensional tensor
indicating the maximum length of the masks. If not provided, the maximum
length will be inferred from the lengths vector.
dtype: the dtype of the returned mask, if specified. If None, the dtype of
the lengths will be used.
name: a name for the operation (optional).
Returns:
A d x max_length tensor of binary masks (int32).
"""
with tf.name_scope(name, 'mask_from_lengths'):
dtype = lengths.dtype if dtype is None else dtype
max_length = tf.reduce_max(lengths) if max_length is None else max_length
indexes = tf.range(max_length, dtype=lengths.dtype)
mask = tf.less(tf.expand_dims(indexes, 0), tf.expand_dims(lengths, 1))
cast_mask = tf.cast(mask, dtype)
return tf.stop_gradient(cast_mask)
示例2: vq_nearest_neighbor
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import stop_gradient [as 别名]
def vq_nearest_neighbor(x, hparams):
"""Find the nearest element in means to elements in x."""
bottleneck_size = 2**hparams.bottleneck_bits
means = hparams.means
x_norm_sq = tf.reduce_sum(tf.square(x), axis=-1, keepdims=True)
means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keepdims=True)
scalar_prod = tf.matmul(x, means, transpose_b=True)
dist = x_norm_sq + tf.transpose(means_norm_sq) - 2 * scalar_prod
if hparams.bottleneck_kind == "em":
x_means_idx = tf.multinomial(-dist, num_samples=hparams.num_samples)
x_means_hot = tf.one_hot(
x_means_idx, depth=bottleneck_size)
x_means_hot = tf.reduce_mean(x_means_hot, axis=1)
else:
x_means_idx = tf.argmax(-dist, axis=-1)
x_means_hot = tf.one_hot(x_means_idx, depth=bottleneck_size)
x_means = tf.matmul(x_means_hot, means)
e_loss = tf.reduce_mean(tf.squared_difference(x, tf.stop_gradient(x_means)))
return x_means_hot, e_loss
示例3: gumbel_sample
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import stop_gradient [as 别名]
def gumbel_sample(self, reconstr_gan):
hparams = self.hparams
is_training = hparams.mode == tf.estimator.ModeKeys.TRAIN
vocab_size = self._problem_hparams.vocab_size["targets"]
if hasattr(self._hparams, "vocab_divisor"):
vocab_size += (-vocab_size) % self._hparams.vocab_divisor
reconstr_gan = tf.nn.log_softmax(reconstr_gan)
if is_training and hparams.gumbel_temperature > 0.0:
gumbel_samples = discretization.gumbel_sample(
common_layers.shape_list(reconstr_gan))
gumbel_samples *= hparams.gumbel_noise_factor
reconstr_gan += gumbel_samples
reconstr_sample = latent_layers.multinomial_sample(
reconstr_gan, temperature=hparams.gumbel_temperature)
reconstr_gan = tf.nn.softmax(reconstr_gan / hparams.gumbel_temperature)
else:
reconstr_sample = tf.argmax(reconstr_gan, axis=-1)
reconstr_gan = tf.nn.softmax(reconstr_gan / 0.1) # Sharpen a bit.
# Use 1-hot forward, softmax backward.
reconstr_hot = tf.one_hot(reconstr_sample, vocab_size)
reconstr_gan += reconstr_hot - tf.stop_gradient(reconstr_gan)
return reconstr_gan
示例4: shake_shake_branch
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import stop_gradient [as 别名]
def shake_shake_branch(x, output_filters, stride, rand_forward, rand_backward,
hparams):
"""Building a 2 branching convnet."""
is_training = hparams.mode == tf.estimator.ModeKeys.TRAIN
x = tf.nn.relu(x)
x = tf.layers.conv2d(
x,
output_filters, (3, 3),
strides=(stride, stride),
padding="SAME",
name="conv1")
x = tf.layers.batch_normalization(x, training=is_training, name="bn1")
x = tf.nn.relu(x)
x = tf.layers.conv2d(x, output_filters, (3, 3), padding="SAME", name="conv2")
x = tf.layers.batch_normalization(x, training=is_training, name="bn2")
if is_training:
x = x * rand_backward + tf.stop_gradient(x * rand_forward -
x * rand_backward)
else:
x *= 1.0 / hparams.shake_shake_num_branches
return x
示例5: pixels_from_softmax
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import stop_gradient [as 别名]
def pixels_from_softmax(frame_logits, pure_sampling=False,
temperature=1.0, gumbel_noise_factor=0.2):
"""Given frame_logits from a per-pixel softmax, generate colors."""
# If we're purely sampling, just sample each pixel.
if pure_sampling or temperature == 0.0:
return common_layers.sample_with_temperature(frame_logits, temperature)
# Gumbel-sample from the pixel sofmax and average by pixel values.
pixel_range = tf.to_float(tf.range(256))
for _ in range(len(frame_logits.get_shape().as_list()) - 1):
pixel_range = tf.expand_dims(pixel_range, axis=0)
frame_logits = tf.nn.log_softmax(frame_logits)
gumbel_samples = discretization.gumbel_sample(
common_layers.shape_list(frame_logits)) * gumbel_noise_factor
frame = tf.nn.softmax((frame_logits + gumbel_samples) / temperature, axis=-1)
result = tf.reduce_sum(frame * pixel_range, axis=-1)
# Round on the forward pass, not on the backward one.
return result + tf.stop_gradient(tf.round(result) - result)
示例6: embedding_lookup
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import stop_gradient [as 别名]
def embedding_lookup(self, x, means):
"""Compute nearest neighbors and loss for training the embeddings.
Args:
x: Batch of encoder continuous latent states sliced/projected into
shape
[-1, num_blocks, block_dim].
means: Embedding means.
Returns:
The nearest neighbor in one hot form, the nearest neighbor
itself, the
commitment loss, embedding training loss.
"""
x_means_hot = self.nearest_neighbor(x, means)
x_means_hot_flat = tf.reshape(
x_means_hot, [-1, self.hparams.num_blocks, self.hparams.block_v_size])
x_means = tf.matmul(tf.transpose(x_means_hot_flat, perm=[1, 0, 2]), means)
x_means = tf.transpose(x_means, [1, 0, 2])
q_loss = tf.reduce_mean(
tf.squared_difference(tf.stop_gradient(x), x_means))
e_loss = tf.reduce_mean(
tf.squared_difference(x, tf.stop_gradient(x_means)))
return x_means_hot, x_means, q_loss, e_loss
示例7: bit_to_int
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import stop_gradient [as 别名]
def bit_to_int(self, x_bit, num_bits, base=2):
"""Turn x_bit representing numbers bitwise (lower-endian) to int tensor.
Args:
x_bit: Tensor containing numbers in a particular base to be
converted to
int.
num_bits: Number of bits in the representation.
base: Base of the representation.
Returns:
Integer representation of this number.
"""
x_l = tf.stop_gradient(tf.to_int32(tf.reshape(x_bit, [-1, num_bits])))
# pylint: disable=g-complex-comprehension
x_labels = [
x_l[:, i] * tf.to_int32(base)**tf.to_int32(i) for i in range(num_bits)]
res = sum(x_labels)
return tf.to_int32(tf.reshape(res, common_layers.shape_list(x_bit)[:-1]))
示例8: bit_to_int
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import stop_gradient [as 别名]
def bit_to_int(x_bit, num_bits, base=2):
"""Turn x_bit representing numbers bitwise (lower-endian) to int tensor.
Args:
x_bit: Tensor containing numbers in a particular base to be converted to
int.
num_bits: Number of bits in the representation.
base: Base of the representation.
Returns:
Integer representation of this number.
"""
x_l = tf.stop_gradient(tf.to_int32(tf.reshape(x_bit, [-1, num_bits])))
x_labels = [
x_l[:, i] * tf.to_int32(base)**tf.to_int32(i) for i in range(num_bits)]
res = sum(x_labels)
return tf.to_int32(tf.reshape(res, common_layers.shape_list(x_bit)[:-1]))
示例9: tanh_discrete_bottleneck
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import stop_gradient [as 别名]
def tanh_discrete_bottleneck(x, bottleneck_bits, bottleneck_noise,
discretize_warmup_steps, mode):
"""Simple discretization through tanh, flip bottleneck_noise many bits."""
x = tf.layers.dense(x, bottleneck_bits, name="tanh_discrete_bottleneck")
d0 = tf.stop_gradient(2.0 * tf.to_float(tf.less(0.0, x))) - 1.0
if mode == tf.estimator.ModeKeys.TRAIN:
x += tf.truncated_normal(
common_layers.shape_list(x), mean=0.0, stddev=0.2)
x = tf.tanh(x)
d = x + tf.stop_gradient(2.0 * tf.to_float(tf.less(0.0, x)) - 1.0 - x)
if mode == tf.estimator.ModeKeys.TRAIN:
noise = tf.random_uniform(common_layers.shape_list(x))
noise = 2.0 * tf.to_float(tf.less(bottleneck_noise, noise)) - 1.0
d *= noise
d = common_layers.mix(d, x, discretize_warmup_steps,
mode == tf.estimator.ModeKeys.TRAIN)
return d, d0
示例10: _build_train_op
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import stop_gradient [as 别名]
def _build_train_op(self):
"""Builds a training op.
Returns:
train_op: An op performing one step of training from replay data.
"""
actions = self._replay.actions
indices = tf.stack([tf.range(actions.shape[0]), actions], axis=-1)
replay_chosen_q = tf.gather_nd(
self._replay_net_outputs.q_heads, indices=indices)
target = tf.stop_gradient(self._build_target_q_op())
loss = tf.losses.huber_loss(
target, replay_chosen_q, reduction=tf.losses.Reduction.NONE)
q_head_losses = tf.reduce_mean(loss, axis=0)
final_loss = tf.reduce_mean(q_head_losses)
if self.summary_writer is not None:
with tf.variable_scope('Losses'):
tf.summary.scalar('HuberLoss', final_loss)
return self.optimizer.minimize(final_loss)
示例11: compute_lengths
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import stop_gradient [as 别名]
def compute_lengths(symbols_list, eos_symbol, name=None,
dtype=tf.int64):
"""Computes sequence lengths given end-of-sequence symbol.
Args:
symbols_list: list of [batch_size] tensors of symbols (e.g. integers).
eos_symbol: end of sequence symbol (e.g. integer).
name: name for the name scope of this op.
dtype: type of symbols, default: tf.int64.
Returns:
Tensor [batch_size] of lengths of sequences.
"""
with tf.name_scope(name, 'compute_lengths'):
max_len = len(symbols_list)
eos_symbol_ = tf.constant(eos_symbol, dtype=dtype)
# Array with max_len-time where we have EOS, 0 otherwise. Maximum of this is
# the first EOS in that example.
ends = [tf.constant(max_len - i, dtype=tf.int64)
* tf.to_int64(tf.equal(s, eos_symbol_))
for i, s in enumerate(symbols_list)]
# Lengths of sequences, or max_len for sequences that didn't have EOS.
# Note: examples that don't have EOS will have max value of 0 and value of
# max_len+1 in lens_.
lens_ = max_len + 1 - tf.reduce_max(tf.stack(ends, 1), axis=1)
# For examples that didn't have EOS decrease max_len+1 to max_len as the
# length.
lens = tf.subtract(lens_, tf.to_int64(tf.equal(lens_, max_len + 1)))
return tf.stop_gradient(tf.reshape(lens, [-1]))
示例12: get_latent_pred_loss
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import stop_gradient [as 别名]
def get_latent_pred_loss(latents_pred, latents_discrete_hot, hparams):
"""Latent prediction and loss."""
latents_logits = tf.layers.dense(
latents_pred, 2**hparams.bottleneck_bits, name="extra_logits")
loss = tf.nn.softmax_cross_entropy_with_logits_v2(
labels=tf.stop_gradient(latents_discrete_hot), logits=latents_logits)
return loss
示例13: reverse_gradient
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import stop_gradient [as 别名]
def reverse_gradient(x, lr=1.0):
return -lr * x + tf.stop_gradient((1.0 + lr) * x)
示例14: bottleneck
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import stop_gradient [as 别名]
def bottleneck(self, x):
hparams = self.hparams
x = tf.tanh(tf.layers.dense(x, hparams.bottleneck_bits, name="bottleneck"))
d = x + tf.stop_gradient(2.0 * tf.to_float(tf.less(0.0, x)) - 1.0 - x)
if hparams.mode == tf.estimator.ModeKeys.TRAIN:
noise = tf.random_uniform(common_layers.shape_list(x))
noise = 2.0 * tf.to_float(tf.less(hparams.bottleneck_noise, noise)) - 1.0
d *= noise
x = common_layers.mix(d, x, hparams.discretize_warmup_steps,
hparams.mode == tf.estimator.ModeKeys.TRAIN)
return x, 0.0
示例15: predict_target_lengths
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import stop_gradient [as 别名]
def predict_target_lengths(
encoder_output, inputs_mask, hparams, length_diff=None):
"""Predict target lengths."""
bound = hparams.lendiff_bound
inputs_length = tf.cast(tf.reduce_sum(inputs_mask, 1), tf.int32)
targets_length = inputs_length
loss = None
if hparams.predict_target_length:
encoder_output = gops.reduce_mean_over_l(encoder_output, inputs_mask)
logits = tf.stop_gradient(encoder_output)
logits = lenpred_mlp("lenpred", logits, hparams.hidden_size, bound)
if length_diff is not None:
labels = tf.maximum(tf.minimum(length_diff, bound), -bound)
labels = tf.cast(labels + bound, tf.int32)
labels = tf.stop_gradient(labels)
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits)
loss = tf.reduce_mean(loss)
diff_pred = tf.argmax(logits, 1)
diff_pred = tf.cast(diff_pred - bound, tf.int32)
targets_length = inputs_length + diff_pred
targets_length = tf.maximum(targets_length, 1)
divi = 4
targets_length = tf.ceil(targets_length / divi) * divi
targets_length = tf.cast(targets_length, tf.int32)
return targets_length, loss