本文整理汇总了Python中tensorflow.compat.v1.sparse_tensor_to_dense方法的典型用法代码示例。如果您正苦于以下问题:Python v1.sparse_tensor_to_dense方法的具体用法?Python v1.sparse_tensor_to_dense怎么用?Python v1.sparse_tensor_to_dense使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.sparse_tensor_to_dense方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _string_to_tokens_dataset_mapper
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import sparse_tensor_to_dense [as 别名]
def _string_to_tokens_dataset_mapper(keys_to_map, suffix="_tok"):
"""Wrapper for mapper that tokenizes and truncates by length."""
def _mapper(dataset):
"""Tokenizes strings using tf.string_split and truncates by length."""
for k in keys_to_map:
# pylint: disable=g-explicit-length-test
if len(dataset[k].get_shape()) == 0: # Used for questions.
# pylint: enable=g-explicit-length-test
# <string> [num_tokens]
tokens = tf.string_split([dataset[k]]).values
else: # Used for contexts.
# <string> [num_context, num_tokens] (sparse)
sparse_tokens = tf.string_split(dataset[k])
# <string>[num_tokens, max_num_tokens] (dense)
tokens = tf.sparse_tensor_to_dense(sparse_tokens, default_value="")
dataset[k + suffix] = tokens
# Compute exact length of each context.
dataset[k + suffix + "_len"] = tf.count_nonzero(
tokens, axis=-1, dtype=tf.int32)
return dataset
return _mapper
示例2: _reshape_context_features
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import sparse_tensor_to_dense [as 别名]
def _reshape_context_features(self, keys_to_tensors):
"""Reshape context features.
The instance context_features are reshaped to
[num_context_features, context_feature_length]
Args:
keys_to_tensors: a dictionary from keys to tensors.
Returns:
A 2-D float tensor of shape [num_context_features, context_feature_length]
"""
context_feature_length = keys_to_tensors['image/context_feature_length']
to_shape = tf.cast(tf.stack([-1, context_feature_length]), tf.int32)
context_features = keys_to_tensors['image/context_features']
if isinstance(context_features, tf.SparseTensor):
context_features = tf.sparse_tensor_to_dense(context_features)
context_features = tf.reshape(context_features, to_shape)
return context_features
示例3: _reshape_keypoints
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import sparse_tensor_to_dense [as 别名]
def _reshape_keypoints(self, keys_to_tensors):
"""Reshape keypoints.
The keypoints are reshaped to [num_instances, num_keypoints, 2].
Args:
keys_to_tensors: a dictionary from keys to tensors. Expected keys are:
'image/object/keypoint/x'
'image/object/keypoint/y'
Returns:
A 3-D float tensor of shape [num_instances, num_keypoints, 2] with values
in [0, 1].
"""
y = keys_to_tensors['image/object/keypoint/y']
if isinstance(y, tf.SparseTensor):
y = tf.sparse_tensor_to_dense(y)
y = tf.expand_dims(y, 1)
x = keys_to_tensors['image/object/keypoint/x']
if isinstance(x, tf.SparseTensor):
x = tf.sparse_tensor_to_dense(x)
x = tf.expand_dims(x, 1)
keypoints = tf.concat([y, x], 1)
keypoints = tf.reshape(keypoints, [-1, self._num_keypoints, 2])
return keypoints
示例4: _reshape_instance_masks
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import sparse_tensor_to_dense [as 别名]
def _reshape_instance_masks(self, keys_to_tensors):
"""Reshape instance segmentation masks.
The instance segmentation masks are reshaped to [num_instances, height,
width].
Args:
keys_to_tensors: a dictionary from keys to tensors.
Returns:
A 3-D float tensor of shape [num_instances, height, width] with values
in {0, 1}.
"""
height = keys_to_tensors['image/height']
width = keys_to_tensors['image/width']
to_shape = tf.cast(tf.stack([-1, height, width]), tf.int32)
masks = keys_to_tensors['image/object/mask']
if isinstance(masks, tf.SparseTensor):
masks = tf.sparse_tensor_to_dense(masks)
masks = tf.reshape(
tf.cast(tf.greater(masks, 0.0), dtype=tf.float32), to_shape)
return tf.cast(masks, tf.float32)
示例5: tensors_to_item
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import sparse_tensor_to_dense [as 别名]
def tensors_to_item(self, keys_to_tensors):
"""Maps the given dictionary of tensors to a concatenated list of bboxes.
Args:
keys_to_tensors: a mapping of TF-Example keys to parsed tensors.
Returns:
[time, num_boxes, 4] tensor of bounding box coordinates, in order
[y_min, x_min, y_max, x_max]. Whether the tensor is a SparseTensor
or a dense Tensor is determined by the return_dense parameter. Empty
positions in the sparse tensor are filled with -1.0 values.
"""
sides = []
for key in self._full_keys:
value = keys_to_tensors[key]
expanded_dims = tf.concat(
[tf.to_int64(tf.shape(value)),
tf.constant([1], dtype=tf.int64)], 0)
side = tf.sparse_reshape(value, expanded_dims)
sides.append(side)
bounding_boxes = tf.sparse_concat(2, sides)
if self._return_dense:
bounding_boxes = tf.sparse_tensor_to_dense(
bounding_boxes, default_value=self._default_value)
return bounding_boxes
示例6: parse_and_preprocess
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import sparse_tensor_to_dense [as 别名]
def parse_and_preprocess(self, value, batch_position):
"""Parse an TFRecord."""
del batch_position
assert self.supports_datasets()
context_features = {
'labels': tf.VarLenFeature(dtype=tf.int64),
'input_length': tf.FixedLenFeature([], dtype=tf.int64),
'label_length': tf.FixedLenFeature([], dtype=tf.int64),
}
sequence_features = {
'features': tf.FixedLenSequenceFeature([161], dtype=tf.float32)
}
context_parsed, sequence_parsed = tf.parse_single_sequence_example(
serialized=value,
context_features=context_features,
sequence_features=sequence_features,
)
return [
# Input
tf.expand_dims(sequence_parsed['features'], axis=2),
# Label
tf.cast(
tf.reshape(
tf.sparse_tensor_to_dense(context_parsed['labels']), [-1]),
dtype=tf.int32),
# Input length
tf.cast(
tf.reshape(context_parsed['input_length'], [1]),
dtype=tf.int32),
# Label length
tf.cast(
tf.reshape(context_parsed['label_length'], [1]),
dtype=tf.int32),
]
示例7: _slice_with_actions
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import sparse_tensor_to_dense [as 别名]
def _slice_with_actions(embeddings, actions):
"""Slice a Tensor.
Take embeddings of the form [batch_size, num_actions, embed_dim]
and actions of the form [batch_size, 1], and return the sliced embeddings
like embeddings[:, actions, :].
Args:
embeddings: Tensor of embeddings to index.
actions: int Tensor to use as index into embeddings
Returns:
Tensor of embeddings indexed by actions
"""
batch_size, num_actions = embeddings.get_shape()[:2]
# Values are the 'values' in a sparse tensor we will be setting
act_indx = tf.cast(actions, tf.int64)[:, None]
values = tf.reshape(tf.cast(tf.ones(tf.shape(actions)), tf.bool), [-1])
# Create a range for each index into the batch
act_range = tf.range(0, batch_size, dtype=tf.int64)[:, None]
# Combine this into coordinates with the action indices
indices = tf.concat([act_range, act_indx], 1)
actions_mask = tf.SparseTensor(indices, values, [batch_size, num_actions])
actions_mask = tf.stop_gradient(
tf.sparse_tensor_to_dense(actions_mask, default_value=False))
sliced_emb = tf.boolean_mask(embeddings, actions_mask)
return sliced_emb
示例8: _dense_pose_part_indices
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import sparse_tensor_to_dense [as 别名]
def _dense_pose_part_indices(self, keys_to_tensors):
"""Creates a tensor that contains part indices for each DensePose point.
Args:
keys_to_tensors: a dictionary from keys to tensors.
Returns:
A 2-D int32 tensor of shape [num_instances, num_points] where each element
contains the DensePose part index (0-23). The value `num_points`
corresponds to the maximum number of sampled points across all instances
in the image. Note that instances with less sampled points will be padded
with zeros in the last dimension.
"""
num_points_per_instances = keys_to_tensors['image/object/densepose/num']
part_index = keys_to_tensors['image/object/densepose/part_index']
if isinstance(num_points_per_instances, tf.SparseTensor):
num_points_per_instances = tf.sparse_tensor_to_dense(
num_points_per_instances)
if isinstance(part_index, tf.SparseTensor):
part_index = tf.sparse_tensor_to_dense(part_index)
part_index = tf.cast(part_index, dtype=tf.int32)
max_points_per_instance = tf.cast(
tf.math.reduce_max(num_points_per_instances), dtype=tf.int32)
num_points_cumulative = tf.concat([
[0], tf.math.cumsum(num_points_per_instances)], axis=0)
def pad_parts_tensor(instance_ind):
points_range_start = num_points_cumulative[instance_ind]
points_range_end = num_points_cumulative[instance_ind + 1]
part_inds = part_index[points_range_start:points_range_end]
return shape_utils.pad_or_clip_nd(part_inds,
output_shape=[max_points_per_instance])
return tf.map_fn(pad_parts_tensor,
tf.range(tf.size(num_points_per_instances)),
dtype=tf.int32)
示例9: _reshape_keypoint_visibilities
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import sparse_tensor_to_dense [as 别名]
def _reshape_keypoint_visibilities(self, keys_to_tensors):
"""Reshape keypoint visibilities.
The keypoint visibilities are reshaped to [num_instances,
num_keypoints].
The raw keypoint visibilities are expected to conform to the
MSCoco definition. See Visibility enum.
The returned boolean is True for the labeled case (either
Visibility.NOT_VISIBLE or Visibility.VISIBLE). These are the same categories
that COCO uses to evaluate keypoint detection performance:
http://cocodataset.org/#keypoints-eval
If image/object/keypoint/visibility is not provided, visibilities will be
set to True for finite keypoint coordinate values, and 0 if the coordinates
are NaN.
Args:
keys_to_tensors: a dictionary from keys to tensors. Expected keys are:
'image/object/keypoint/x'
'image/object/keypoint/visibility'
Returns:
A 2-D bool tensor of shape [num_instances, num_keypoints] with values
in {0, 1}. 1 if the keypoint is labeled, 0 otherwise.
"""
x = keys_to_tensors['image/object/keypoint/x']
vis = keys_to_tensors['image/object/keypoint/visibility']
if isinstance(vis, tf.SparseTensor):
vis = tf.sparse_tensor_to_dense(vis)
if isinstance(x, tf.SparseTensor):
x = tf.sparse_tensor_to_dense(x)
default_vis = tf.where(
tf.math.is_nan(x),
Visibility.UNLABELED.value * tf.ones_like(x, dtype=tf.int64),
Visibility.VISIBLE.value * tf.ones_like(x, dtype=tf.int64))
# Use visibility if provided, otherwise use the default visibility.
vis = tf.cond(tf.equal(tf.size(x), tf.size(vis)),
true_fn=lambda: vis,
false_fn=lambda: default_vis)
vis = tf.math.logical_or(
tf.math.equal(vis, Visibility.NOT_VISIBLE.value),
tf.math.equal(vis, Visibility.VISIBLE.value))
vis = tf.reshape(vis, [-1, self._num_keypoints])
return vis
示例10: _dense_pose_surface_coordinates
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import sparse_tensor_to_dense [as 别名]
def _dense_pose_surface_coordinates(self, keys_to_tensors):
"""Creates a tensor that contains surface coords for each DensePose point.
Args:
keys_to_tensors: a dictionary from keys to tensors.
Returns:
A 3-D float32 tensor of shape [num_instances, num_points, 4] where each
point contains (y, x, v, u) data for each sampled DensePose point. The
(y, x) coordinate has normalized image locations for the point, and (v, u)
contains the surface coordinate (also normalized) for the part. The value
`num_points` corresponds to the maximum number of sampled points across
all instances in the image. Note that instances with less sampled points
will be padded with zeros in dim=1.
"""
num_points_per_instances = keys_to_tensors['image/object/densepose/num']
dp_y = keys_to_tensors['image/object/densepose/y']
dp_x = keys_to_tensors['image/object/densepose/x']
dp_v = keys_to_tensors['image/object/densepose/v']
dp_u = keys_to_tensors['image/object/densepose/u']
if isinstance(num_points_per_instances, tf.SparseTensor):
num_points_per_instances = tf.sparse_tensor_to_dense(
num_points_per_instances)
if isinstance(dp_y, tf.SparseTensor):
dp_y = tf.sparse_tensor_to_dense(dp_y)
if isinstance(dp_x, tf.SparseTensor):
dp_x = tf.sparse_tensor_to_dense(dp_x)
if isinstance(dp_v, tf.SparseTensor):
dp_v = tf.sparse_tensor_to_dense(dp_v)
if isinstance(dp_u, tf.SparseTensor):
dp_u = tf.sparse_tensor_to_dense(dp_u)
max_points_per_instance = tf.cast(
tf.math.reduce_max(num_points_per_instances), dtype=tf.int32)
num_points_cumulative = tf.concat([
[0], tf.math.cumsum(num_points_per_instances)], axis=0)
def pad_surface_coordinates_tensor(instance_ind):
"""Pads DensePose surface coordinates for each instance."""
points_range_start = num_points_cumulative[instance_ind]
points_range_end = num_points_cumulative[instance_ind + 1]
y = dp_y[points_range_start:points_range_end]
x = dp_x[points_range_start:points_range_end]
v = dp_v[points_range_start:points_range_end]
u = dp_u[points_range_start:points_range_end]
# Create [num_points_i, 4] tensor, where num_points_i is the number of
# sampled points for instance i.
unpadded_tensor = tf.stack([y, x, v, u], axis=1)
return shape_utils.pad_or_clip_nd(
unpadded_tensor, output_shape=[max_points_per_instance, 4])
return tf.map_fn(pad_surface_coordinates_tensor,
tf.range(tf.size(num_points_per_instances)),
dtype=tf.float32)