本文整理汇总了Python中tensorflow.compat.v1.reduce_sum方法的典型用法代码示例。如果您正苦于以下问题:Python v1.reduce_sum方法的具体用法?Python v1.reduce_sum怎么用?Python v1.reduce_sum使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.reduce_sum方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _build
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_sum [as 别名]
def _build(self, x, state):
prev_keep_mask = state
shape = tf.shape(x)
noise = tf.random_uniform(shape, dtype=x.dtype)
other_mask = tf.floor(self._keep_prob + noise)
choice_noise = tf.random_uniform(shape, dtype=x.dtype)
choice = tf.less(choice_noise, self._flip_prob)
# KLUDGE(melisgl): The client has to pass the last keep_mask from
# a batch to the next so the mask may end up next to some
# recurrent cell state. This state is often zero at the beginning
# and may be periodically zeroed (per example) during training.
# While zeroing LSTM state is okay, zeroing the dropout mask is
# not. So instead of forcing every client to deal with this common
# (?) case, if an all zero mask is detected, then regenerate a
# fresh mask. This is of course a major hack and won't help with
# learnt initial states, for example.
sum_ = tf.reduce_sum(prev_keep_mask, 1, keepdims=True)
is_initializing = tf.equal(sum_, 0.0)
self._keep_mask = tf.where(tf.logical_or(choice, is_initializing),
other_mask,
prev_keep_mask)
self._time_step += 1
return x * self._keep_mask / self._keep_prob * self._scaler
示例2: _make_update
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_sum [as 别名]
def _make_update(self):
mss = []
gsum = 0.0
count = 0
for sum_squared_grads in self._sum_squared_grads:
ms = tf.sqrt(sum_squared_grads / self._num_squared_grads)
gsum += tf.reduce_sum(ms)
count += tf.reduce_sum(tf.ones_like(ms))
mss.append(ms)
gsum = gsum / count
assignments = []
for grad, var, save, sum_squared_grads, ms in zip(
self._grads, self._vars, self._saves, self._sum_squared_grads, mss):
decay_rate = tf.minimum(1.0, self._decay_rate*(ms/gsum))
delta = (-self._learning_rate*grad / (ms + self._epsilon) +
decay_rate*(save-var))
assignments.append(var.assign_add(delta))
return tf.group(assignments)
示例3: _distributional_to_value
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_sum [as 别名]
def _distributional_to_value(value_d, size, subscale, threshold):
"""Get a scalar value out of a value distribution in distributional RL."""
half = size // 2
value_range = (tf.to_float(tf.range(-half, half)) + 0.5) * subscale
probs = tf.nn.softmax(value_d)
if threshold == 0.0:
return tf.reduce_sum(probs * value_range, axis=-1)
# accumulated_probs[..., i] is the sum of probabilities in buckets upto i
# so it is the probability that value <= i'th bucket value
accumulated_probs = tf.cumsum(probs, axis=-1)
# New probs are 0 on all lower buckets, until the threshold
probs = tf.where(accumulated_probs < threshold, tf.zeros_like(probs), probs)
probs /= tf.reduce_sum(probs, axis=-1, keepdims=True) # Re-normalize.
return tf.reduce_sum(probs * value_range, axis=-1)
示例4: padded_accuracy_topk
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_sum [as 别名]
def padded_accuracy_topk(predictions,
labels,
k,
weights_fn=common_layers.weights_nonzero):
"""Percentage of times that top-k predictions matches labels on non-0s."""
with tf.variable_scope("padded_accuracy_topk", values=[predictions, labels]):
padded_predictions, padded_labels = common_layers.pad_with_zeros(
predictions, labels)
weights = weights_fn(padded_labels)
effective_k = tf.minimum(k,
common_layers.shape_list(padded_predictions)[-1])
_, outputs = tf.nn.top_k(padded_predictions, k=effective_k)
outputs = tf.to_int32(outputs)
padded_labels = tf.to_int32(padded_labels)
padded_labels = tf.expand_dims(padded_labels, axis=-1)
padded_labels += tf.zeros_like(outputs) # Pad to same shape.
same = tf.to_float(tf.equal(outputs, padded_labels))
same_topk = tf.reduce_sum(same, axis=-1)
return same_topk, weights
示例5: cv_squared
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_sum [as 别名]
def cv_squared(x):
"""The squared coefficient of variation of a sample.
Useful as a loss to encourage a positive distribution to be more uniform.
Epsilons added for numerical stability.
Returns 0 for an empty Tensor.
Args:
x: a `Tensor`.
Returns:
a `Scalar`.
"""
epsilon = 1e-10
float_size = tf.to_float(tf.size(x)) + epsilon
mean = tf.reduce_sum(x) / float_size
variance = tf.reduce_sum(tf.squared_difference(x, mean)) / float_size
return variance / (tf.square(mean) + epsilon)
示例6: __init__
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_sum [as 别名]
def __init__(self, num_experts, gates):
"""Create a SparseDispatcher.
Args:
num_experts: an integer.
gates: a `Tensor` of shape `[batch_size, num_experts]`.
Returns:
a SparseDispatcher
"""
self._gates = gates
self._num_experts = num_experts
where = tf.to_int32(tf.where(tf.transpose(gates) > 0))
self._expert_index, self._batch_index = tf.unstack(where, num=2, axis=1)
self._part_sizes_tensor = tf.reduce_sum(tf.to_int32(gates > 0), [0])
self._nonzero_gates = tf.gather(
tf.reshape(self._gates, [-1]),
self._batch_index * num_experts + self._expert_index)
示例7: summarize_features
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_sum [as 别名]
def summarize_features(features, num_shards=1):
"""Generate summaries for features."""
if not common_layers.should_generate_summaries():
return
with tf.name_scope("input_stats"):
for (k, v) in sorted(six.iteritems(features)):
if (isinstance(v, tf.Tensor) and (v.get_shape().ndims > 1) and
(v.dtype != tf.string)):
tf.summary.scalar("%s_batch" % k, tf.shape(v)[0] // num_shards)
tf.summary.scalar("%s_length" % k, tf.shape(v)[1])
nonpadding = tf.to_float(tf.not_equal(v, 0))
nonpadding_tokens = tf.reduce_sum(nonpadding)
tf.summary.scalar("%s_nonpadding_tokens" % k, nonpadding_tokens)
tf.summary.scalar("%s_nonpadding_fraction" % k,
tf.reduce_mean(nonpadding))
示例8: vq_nearest_neighbor
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_sum [as 别名]
def vq_nearest_neighbor(x, hparams):
"""Find the nearest element in means to elements in x."""
bottleneck_size = 2**hparams.bottleneck_bits
means = hparams.means
x_norm_sq = tf.reduce_sum(tf.square(x), axis=-1, keepdims=True)
means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keepdims=True)
scalar_prod = tf.matmul(x, means, transpose_b=True)
dist = x_norm_sq + tf.transpose(means_norm_sq) - 2 * scalar_prod
if hparams.bottleneck_kind == "em":
x_means_idx = tf.multinomial(-dist, num_samples=hparams.num_samples)
x_means_hot = tf.one_hot(
x_means_idx, depth=bottleneck_size)
x_means_hot = tf.reduce_mean(x_means_hot, axis=1)
else:
x_means_idx = tf.argmax(-dist, axis=-1)
x_means_hot = tf.one_hot(x_means_idx, depth=bottleneck_size)
x_means = tf.matmul(x_means_hot, means)
e_loss = tf.reduce_mean(tf.squared_difference(x, tf.stop_gradient(x_means)))
return x_means_hot, e_loss
示例9: body
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_sum [as 别名]
def body(self, features):
# TODO(lukaszkaiser): investigate this issue and repair.
if self._hparams.initializer == "orthogonal":
raise ValueError("LSTM models fail with orthogonal initializer.")
train = self._hparams.mode == tf.estimator.ModeKeys.TRAIN
# This is a temporary fix for varying-length sequences within in a batch.
# A more complete fix should pass a length tensor from outside so that
# all the lstm variants can use it.
input_shape = common_layers.shape_list(features["inputs_raw"])
flat_input = tf.reshape(features["inputs_raw"],
[input_shape[0], input_shape[1]])
inputs_length = tf.reduce_sum(tf.minimum(flat_input, 1), -1)
target_shape = common_layers.shape_list(features["targets_raw"])
flat_target = tf.reshape(features["targets_raw"],
[target_shape[0], target_shape[1]])
targets_length = tf.reduce_sum(tf.minimum(flat_target, 1), -1)
tf.logging.info(self._hparams)
return lstm_seq2seq_internal_attention(
features["inputs"], features["targets"], self._hparams, train,
inputs_length, targets_length)
示例10: pixels_from_softmax
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_sum [as 别名]
def pixels_from_softmax(frame_logits, pure_sampling=False,
temperature=1.0, gumbel_noise_factor=0.2):
"""Given frame_logits from a per-pixel softmax, generate colors."""
# If we're purely sampling, just sample each pixel.
if pure_sampling or temperature == 0.0:
return common_layers.sample_with_temperature(frame_logits, temperature)
# Gumbel-sample from the pixel sofmax and average by pixel values.
pixel_range = tf.to_float(tf.range(256))
for _ in range(len(frame_logits.get_shape().as_list()) - 1):
pixel_range = tf.expand_dims(pixel_range, axis=0)
frame_logits = tf.nn.log_softmax(frame_logits)
gumbel_samples = discretization.gumbel_sample(
common_layers.shape_list(frame_logits)) * gumbel_noise_factor
frame = tf.nn.softmax((frame_logits + gumbel_samples) / temperature, axis=-1)
result = tf.reduce_sum(frame * pixel_range, axis=-1)
# Round on the forward pass, not on the backward one.
return result + tf.stop_gradient(tf.round(result) - result)
示例11: actnorm
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_sum [as 别名]
def actnorm(name, x, x_mask, inverse, init, logscale_factor=3.0):
"""Activation normalization, returns logabsdet of shape [B]."""
eps = tf.keras.backend.epsilon()
n_channels = common_layers.shape_list(x)[2]
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
x_mean, x_var = gops.moments_over_bl(x, x_mask)
b = gops.get_variable_ddi(
"b", (n_channels), -x_mean, init, tf.zeros_initializer)
log_w_init = -0.5 * tf.log(x_var + eps) / logscale_factor
log_w = gops.get_variable_ddi(
"log_w", (n_channels), log_w_init, init,
tf.zeros_initializer) * logscale_factor
if not inverse:
x = (x + b) * tf.exp(log_w)
else:
x = x * tf.exp(-log_w) - b
x_length = tf.reduce_sum(x_mask, -1)
logabsdet = x_length * tf.reduce_sum(log_w)
if inverse:
logabsdet *= -1
return x, logabsdet
示例12: multi_label_loss
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_sum [as 别名]
def multi_label_loss(top_out, targets, model_hparams, vocab_size, weights_fn):
"""Average loss over the labels."""
del vocab_size # unused arg
logits = top_out
num_labels = tf.shape(targets)[1]
logits = tf.tile(logits, [1, num_labels, 1, 1, 1])
xent, weights = common_layers.padded_cross_entropy(
logits,
targets,
model_hparams.label_smoothing,
weights_fn=weights_fn,
reduce_sum=False,
)
xent = tf.squeeze(xent, [2, 3])
weights = tf.squeeze(weights, [2, 3])
# average loss over all labels
loss = tf.reduce_sum(xent, axis=1)
weights = tf.reduce_sum(weights, axis=1)
loss /= (weights + 1e-8)
weights = tf.to_float(tf.greater(weights, 0.))
return tf.reduce_sum(loss*weights), tf.reduce_sum(weights)
示例13: one_hot_class_label_loss
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_sum [as 别名]
def one_hot_class_label_loss(top_out,
targets,
model_hparams,
vocab_size,
weights_fn):
"""Apply softmax cross-entropy between outputs and targets.
Args:
top_out: logits Tensor with shape [batch, ?, ?, num_classes]
targets: one-hot encoding Tensor with shape [batch, ?, ?, num_classes]
model_hparams: HParams, model hyperparmeters.
vocab_size: int, vocabulary size.
weights_fn:
Returns:
loss_scale (cross-entropy), loss_denom
"""
del model_hparams, vocab_size # unused arg
loss_scale = tf.losses.softmax_cross_entropy(
onehot_labels=targets, logits=top_out)
weights = weights_fn(targets)
loss_denom = tf.reduce_sum(weights)
return loss_scale, loss_denom
示例14: kl_divergence
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_sum [as 别名]
def kl_divergence(mu, log_var, mu_p=0.0, log_var_p=0.0):
"""KL divergence of diagonal gaussian N(mu,exp(log_var)) and N(0,1).
Args:
mu: mu parameter of the distribution.
log_var: log(var) parameter of the distribution.
mu_p: optional mu from a learned prior distribution
log_var_p: optional log(var) from a learned prior distribution
Returns:
the KL loss.
"""
batch_size = shape_list(mu)[0]
prior_distribution = tfp.distributions.Normal(
mu_p, tf.exp(tf.multiply(0.5, log_var_p)))
posterior_distribution = tfp.distributions.Normal(
mu, tf.exp(tf.multiply(0.5, log_var)))
kld = tfp.distributions.kl_divergence(posterior_distribution,
prior_distribution)
return tf.reduce_sum(kld) / to_float(batch_size)
示例15: testDmlLoss
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_sum [as 别名]
def testDmlLoss(self, batch, height, width, num_mixtures, reduce_sum):
channels = 3
pred = tf.random_normal([batch, height, width, num_mixtures * 10])
labels = tf.random_uniform([batch, height, width, channels],
minval=0, maxval=256, dtype=tf.int32)
actual_loss_num, actual_loss_den = common_layers.dml_loss(
pred=pred, labels=labels, reduce_sum=reduce_sum)
actual_loss = actual_loss_num / actual_loss_den
real_labels = common_layers.convert_rgb_to_symmetric_real(labels)
expected_loss = common_layers.discretized_mix_logistic_loss(
pred=pred, labels=real_labels) / channels
if reduce_sum:
expected_loss = tf.reduce_mean(expected_loss)
actual_loss_val, expected_loss_val = self.evaluate(
[actual_loss, expected_loss])
self.assertAllClose(actual_loss_val, expected_loss_val)