本文整理汇总了Python中tensorflow.compat.v1.reduce_any方法的典型用法代码示例。如果您正苦于以下问题:Python v1.reduce_any方法的具体用法?Python v1.reduce_any怎么用?Python v1.reduce_any使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.reduce_any方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testLoss
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_any [as 别名]
def testLoss(self):
batch_size = 2
key_depth = 5
val_depth = 5
memory_size = 4
window_size = 3
x_depth = 5
memory = transformer_memory.TransformerMemory(
batch_size, key_depth, val_depth, memory_size)
x = tf.random_uniform([batch_size, window_size, x_depth], minval=.0)
memory_results, _, _, _ = (
memory.pre_attention(
tf.random_uniform([batch_size], minval=0, maxval=1, dtype=tf.int32),
x, None, None))
x = memory.post_attention(memory_results, x)
with tf.control_dependencies([tf.print("x", x)]):
is_nan = tf.reduce_any(tf.math.is_nan(x))
with self.test_session() as session:
session.run(tf.global_variables_initializer())
for _ in range(100):
is_nan_value, _ = session.run([is_nan, x])
self.assertEqual(is_nan_value, False)
示例2: aggregate_gradients_using_copy_with_device_selection
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_any [as 别名]
def aggregate_gradients_using_copy_with_device_selection(
benchmark_cnn, tower_grads, use_mean, check_inf_nan):
"""Aggregate gradients, controlling device for the aggregation.
Args:
benchmark_cnn: benchmark_cnn class.
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over towers. The inner list is over individual gradients.
use_mean: if True, mean is taken, else sum of gradients is taken.
check_inf_nan: If true, check grads for nans and infs.
Returns:
The tuple ([(average_gradient, variable),], has_nan_or_inf) where the
gradient has been averaged across all towers. The variable is chosen from
the first tower. The has_nan_or_inf indicates the grads has nan or inf.
"""
if benchmark_cnn.local_parameter_device_flag == 'gpu':
avail_devices = benchmark_cnn.raw_devices
else:
avail_devices = [benchmark_cnn.param_server_device]
agg_grads = []
has_nan_or_inf_list = []
for i, single_grads in enumerate(zip(*tower_grads)):
with tf.device(avail_devices[i % len(avail_devices)]):
grad_and_var, has_nan_or_inf = aggregate_single_gradient_using_copy(
single_grads, use_mean, check_inf_nan)
agg_grads.append(grad_and_var)
has_nan_or_inf_list.append(has_nan_or_inf)
if check_inf_nan:
return agg_grads, tf.reduce_any(has_nan_or_inf_list)
else:
return agg_grads, None
示例3: aggregate_gradients_using_copy_with_variable_colocation
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_any [as 别名]
def aggregate_gradients_using_copy_with_variable_colocation(
tower_grads, use_mean, check_inf_nan):
"""Aggregate gradients, colocating computation with the gradient's variable.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over towers. The inner list is over individual gradients. All variables
of the same gradient across towers must be the same (that is,
tower_grads[x][a][1] == tower_grads[y][a][1] for all indices x, y, and a)
use_mean: if True, mean is taken, else sum of gradients is taken.
check_inf_nan: If true, check grads for nans and infs.
Returns:
The tuple ([(average_gradient, variable),], has_nan_or_inf) where the
gradient has been averaged across all towers. The variable is chosen from
the first tower. The has_nan_or_inf indicates the grads has nan or inf.
"""
agg_grads = []
has_nan_or_inf_list = []
for single_grads in zip(*tower_grads):
# Note that each single_grads looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
var = single_grads[0][1]
for _, v in single_grads:
assert v == var
with tf.device(var.device):
grad_and_var, has_nan_or_inf = aggregate_single_gradient_using_copy(
single_grads, use_mean, check_inf_nan)
agg_grads.append(grad_and_var)
has_nan_or_inf_list.append(has_nan_or_inf)
if check_inf_nan:
return agg_grads, tf.reduce_any(has_nan_or_inf_list)
else:
return agg_grads, None
示例4: aggregate_gradients_using_copy
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_any [as 别名]
def aggregate_gradients_using_copy(tower_grads, use_mean, check_inf_nan):
"""Calculate the average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over towers. The inner list is over individual gradients.
use_mean: if True, mean is taken, else sum of gradients is taken.
check_inf_nan: check grads for nans and infs.
Returns:
The tuple ([(average_gradient, variable),], has_nan_or_inf) where the
gradient has been averaged across all towers. The variable is chosen from
the first tower. The has_nan_or_inf indicates the grads has nan or inf.
"""
agg_grads = []
has_nan_or_inf_list = []
for single_grads in zip(*tower_grads):
grad_and_var, has_nan_or_inf = aggregate_single_gradient_using_copy(
single_grads, use_mean, check_inf_nan)
agg_grads.append(grad_and_var)
has_nan_or_inf_list.append(has_nan_or_inf)
if check_inf_nan:
return agg_grads, tf.reduce_any(has_nan_or_inf_list)
else:
return agg_grads, None
# The following two functions are copied from
# tensorflow/python/eager/backprop.py. We do not directly use them as they are
# not exported and subject to change at any time.
示例5: _expand_image_label_hierarchy
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_any [as 别名]
def _expand_image_label_hierarchy(self, image_classes, image_confidences):
"""Expand image level labels according to the hierarchy.
Args:
image_classes: Int64 tensor with the image level class ids for a sample.
image_confidences: Float tensor signaling whether a class id is present in
the image (1.0) or not present (0.0).
Returns:
new_image_classes: Int64 tensor equal to expanding image_classes.
new_image_confidences: Float tensor equal to expanding image_confidences.
"""
def expand_labels(relation_tensor, confidence_value):
"""Expand to ancestors or descendants depending on arguments."""
mask = tf.equal(image_confidences, confidence_value)
target_image_classes = tf.boolean_mask(image_classes, mask)
expanded_indices = tf.reduce_any((tf.gather(
relation_tensor, target_image_classes - _LABEL_OFFSET, axis=0) > 0),
axis=0)
expanded_indices = tf.where(expanded_indices)[:, 0] + _LABEL_OFFSET
new_groundtruth_image_classes = (
tf.concat([
tf.boolean_mask(image_classes, tf.logical_not(mask)),
expanded_indices,
],
axis=0))
new_groundtruth_image_confidences = (
tf.concat([
tf.boolean_mask(image_confidences, tf.logical_not(mask)),
tf.ones([tf.shape(expanded_indices)[0]],
dtype=image_confidences.dtype) * confidence_value,
],
axis=0))
return new_groundtruth_image_classes, new_groundtruth_image_confidences
image_classes, image_confidences = expand_labels(self._ancestors_lut, 1.0)
new_image_classes, new_image_confidences = expand_labels(
self._descendants_lut, 0.0)
return new_image_classes, new_image_confidences
示例6: _self_suppression
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_any [as 别名]
def _self_suppression(iou, iou_threshold, loop_condition, iou_sum):
"""Bounding-boxes self-suppression loop body.
Args:
iou: A float Tensor with shape [1, num_boxes, max_num_instance]: IOUs.
iou_threshold: A scalar, representing IOU threshold.
loop_condition: The loop condition returned from last iteration.
iou_sum: iou_sum_new returned from last iteration.
Returns:
iou_suppressed: A float Tensor with shape [1, num_boxes, max_num_instance],
IOU after suppression.
iou_threshold: A scalar, representing IOU threshold.
loop_condition: Bool Tensor of shape [], the loop condition.
iou_sum_new: The new IOU sum.
"""
del loop_condition
can_suppress_others = tf.cast(
tf.reshape(tf.reduce_max(iou, 1) <= iou_threshold, [1, -1, 1]), iou.dtype)
iou_suppressed = tf.reshape(
tf.cast(
tf.reduce_max(can_suppress_others * iou, 1) <= iou_threshold,
iou.dtype), [1, -1, 1]) * iou
iou_sum_new = tf.reduce_sum(iou_suppressed, [1, 2])
return [
iou_suppressed, iou_threshold,
tf.reduce_any(iou_sum - iou_sum_new > iou_threshold), iou_sum_new
]
示例7: prune_outside_window
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_any [as 别名]
def prune_outside_window(boxlist, window, scope=None):
"""Prunes bounding boxes that fall outside a given window.
This function prunes bounding boxes that even partially fall outside the given
window. See also clip_to_window which only prunes bounding boxes that fall
completely outside the window, and clips any bounding boxes that partially
overflow.
Args:
boxlist: a BoxList holding M_in boxes.
window: a float tensor of shape [4] representing [ymin, xmin, ymax, xmax]
of the window
scope: name scope.
Returns:
pruned_corners: a tensor with shape [M_out, 4] where M_out <= M_in
valid_indices: a tensor with shape [M_out] indexing the valid bounding boxes
in the input tensor.
"""
with tf.name_scope(scope, 'PruneOutsideWindow'):
y_min, x_min, y_max, x_max = tf.split(
value=boxlist.get(), num_or_size_splits=4, axis=1)
win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window)
coordinate_violations = tf.concat([
tf.less(y_min, win_y_min), tf.less(x_min, win_x_min),
tf.greater(y_max, win_y_max), tf.greater(x_max, win_x_max)
], 1)
valid_indices = tf.reshape(
tf.where(tf.logical_not(tf.reduce_any(coordinate_violations, 1))), [-1])
return gather(boxlist, valid_indices), valid_indices
示例8: prune_completely_outside_window
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_any [as 别名]
def prune_completely_outside_window(boxlist, window, scope=None):
"""Prunes bounding boxes that fall completely outside of the given window.
The function clip_to_window prunes bounding boxes that fall
completely outside the window, but also clips any bounding boxes that
partially overflow. This function does not clip partially overflowing boxes.
Args:
boxlist: a BoxList holding M_in boxes.
window: a float tensor of shape [4] representing [ymin, xmin, ymax, xmax]
of the window
scope: name scope.
Returns:
pruned_boxlist: a new BoxList with all bounding boxes partially or fully in
the window.
valid_indices: a tensor with shape [M_out] indexing the valid bounding boxes
in the input tensor.
"""
with tf.name_scope(scope, 'PruneCompleteleyOutsideWindow'):
y_min, x_min, y_max, x_max = tf.split(
value=boxlist.get(), num_or_size_splits=4, axis=1)
win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window)
coordinate_violations = tf.concat([
tf.greater_equal(y_min, win_y_max), tf.greater_equal(x_min, win_x_max),
tf.less_equal(y_max, win_y_min), tf.less_equal(x_max, win_x_min)
], 1)
valid_indices = tf.reshape(
tf.where(tf.logical_not(tf.reduce_any(coordinate_violations, 1))), [-1])
return gather(boxlist, valid_indices), valid_indices
示例9: _span_answer
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_any [as 别名]
def _span_answer(context, answer_text):
"""Finds start/end indices of answer_text in context after space tokenization.
If answer_tokens is not a sublist of context_tokens, returns empty string.
Args:
context: 0-d string tensor
answer_text: 0-d string
Returns:
A string tensor.
"""
def space_tok(s):
"""Replace non-word chars with space then split on space."""
s = tf.strings.regex_replace(s, r'\W', ' ')
return tf.strings.split(input=[s], sep=' ').values
def find_subseq(n, h):
"""Finds index of needle subsequence inside haystack.
Args:
n: 1-d tensor
h: 1-d tensor same type as n
Returns:
Index of start of n if found found; otherwise -1.
"""
l_n = tf.size(n)
l_h = tf.size(h)
i = tf.constant(0)
end = l_h - l_n
# TODO(peterjliu): Replace with craffel@'s more efficient code
# if necessary: cr/254848350.
w = tf.while_loop(
lambda i: tf.logical_and(tf.less(i, end),
tf.reduce_any(tf.not_equal(h[i:i+l_n], n))),
lambda i: i+1,
[i])
return tf.cond(tf.equal(end, w), lambda: -1, lambda: w)
answer_tokens = space_tok(answer_text)
context_tokens = space_tok(context)
start = find_subseq(answer_tokens, context_tokens)
end = start + tf.size(answer_tokens) - 1
# Just take the first candidate that matches exactly.
return tf.cond(tf.equal(start, -1),
lambda: tf.constant(''),
lambda: tf.strings.format('start: {} end: {}', [start, end]))
示例10: multi_translate
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_any [as 别名]
def multi_translate(dataset, source_language, target_language):
"""Convert a multi-translate dataset to a text2text pair.
For example, say the dataset returns examples which have a 'translations'
feature key so that examples have the following format:
{
...
'translations': {
'language': ['de', 'fr', 'en'],
'translation': ['Das ist gut.', 'Ca c'est bon', 'That is good.']
},
...
}
If source_language = 'de', target_language = 'en', then this function will
return examples of the format:
{'inputs': 'translate German to English: Das is gut.',
'targets': 'That is good.'}
Any other languages present in the dataset will be filtered out.
Args:
dataset: a tf.data.Dataset to process.
source_language: source language code (e.g. 'en') to translate from.
target_language: target language code (e.g. 'de') to translate to.
Returns:
A preprocessed tf.data.Dataset with the format listed above.
"""
def filter_fn(x):
langs = x['translations']['language']
# Test whether both source/target_language appear in the language list
source_in_langs = tf.reduce_any(tf.equal(source_language, langs))
target_in_langs = tf.reduce_any(tf.equal(target_language, langs))
return tf.logical_and(source_in_langs, target_in_langs)
def map_fn(x):
langs = x['translations']['language']
# Retrieve the index in langs where source/target_language appears
src_idx = tf.squeeze(tf.where(tf.equal(langs, source_language)))
tgt_idx = tf.squeeze(tf.where(tf.equal(langs, target_language)))
return {
source_language: x['translations']['translation'][src_idx],
target_language: x['translations']['translation'][tgt_idx],
}
dataset = dataset.filter(filter_fn)
dataset = dataset.map(
map_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE
)
return translate(dataset, source_language, target_language)
示例11: _suppression_loop_body
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_any [as 别名]
def _suppression_loop_body(boxes, iou_threshold, output_size, idx):
"""Process boxes in the range [idx*_NMS_TILE_SIZE, (idx+1)*_NMS_TILE_SIZE).
Args:
boxes: a tensor with a shape of [1, anchors, 4].
iou_threshold: a float representing the threshold for deciding whether boxes
overlap too much with respect to IOU.
output_size: an int32 tensor of size [1]. Representing the number of
selected boxes.
idx: an integer scalar representing induction variable.
Returns:
boxes: updated boxes.
iou_threshold: pass down iou_threshold to the next iteration.
output_size: the updated output_size.
idx: the updated induction variable.
"""
num_tiles = tf.shape(boxes)[1] // _NMS_TILE_SIZE
# Iterates over tiles that can possibly suppress the current tile.
box_slice = tf.slice(boxes, [0, idx * _NMS_TILE_SIZE, 0],
[1, _NMS_TILE_SIZE, 4])
_, box_slice, _, _ = tf.while_loop(
lambda _boxes, _box_slice, _threshold, inner_idx: inner_idx < idx,
_cross_suppression, [boxes, box_slice, iou_threshold,
tf.constant(0)])
# Iterates over the current tile to compute self-suppression.
iou = batch_iou(box_slice, box_slice)
mask = tf.expand_dims(
tf.reshape(tf.range(_NMS_TILE_SIZE), [1, -1]) > tf.reshape(
tf.range(_NMS_TILE_SIZE), [-1, 1]), 0)
iou *= tf.cast(tf.logical_and(mask, iou >= iou_threshold), iou.dtype)
suppressed_iou, _, _, _ = tf.while_loop(
lambda _iou, _threshold, loop_condition, _iou_sum: loop_condition,
_self_suppression,
[iou, iou_threshold,
tf.constant(True),
tf.reduce_sum(iou, [1, 2])])
suppressed_box = tf.reduce_sum(suppressed_iou, 1) > 0
box_slice *= tf.expand_dims(1.0 - tf.cast(suppressed_box, box_slice.dtype), 2)
# Uses box_slice to update the input boxes.
mask = tf.reshape(
tf.cast(tf.equal(tf.range(num_tiles), idx), boxes.dtype), [1, -1, 1, 1])
boxes = tf.tile(tf.expand_dims(box_slice, [1]),
[1, num_tiles, 1, 1]) * mask + tf.reshape(
boxes, [1, num_tiles, _NMS_TILE_SIZE, 4]) * (1 - mask)
boxes = tf.reshape(boxes, [1, -1, 4])
# Updates output_size.
output_size += tf.reduce_sum(
tf.cast(tf.reduce_any(box_slice > 0, [2]), tf.int32), [1])
return boxes, iou_threshold, output_size, idx + 1
示例12: _continue_search
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_any [as 别名]
def _continue_search(self, state):
"""Return whether to continue the search loop.
The loops should terminate when
1) when decode length has been reached, or
2) when the worst score in the finished sequences is better than the best
score in the alive sequences (i.e. the finished sequences are provably
unchanging)
Args:
state: A dictionary with the current loop state.
Returns:
Bool tensor with value True if loop should continue, False if loop should
terminate.
"""
i = state[_StateKeys.CUR_INDEX]
alive_log_probs = state[_StateKeys.ALIVE_LOG_PROBS]
finished_scores = state[_StateKeys.FINISHED_SCORES]
finished_flags = state[_StateKeys.FINISHED_FLAGS]
not_at_max_decode_length = tf.less(i, self.max_decode_length)
# Calculate largest length penalty (the larger penalty, the better score).
max_length_norm = _length_normalization(self.alpha, self.max_decode_length,
dtype=self.dtype)
# Get the best possible scores from alive sequences.
best_alive_scores = alive_log_probs[:, 0] / max_length_norm
# Compute worst score in finished sequences for each batch element
finished_scores *= tf.cast(finished_flags,
self.dtype) # set filler scores to zero
lowest_finished_scores = tf.reduce_min(finished_scores, axis=1)
# If there are no finished sequences in a batch element, then set the lowest
# finished score to -INF for that element.
finished_batches = tf.reduce_any(finished_flags, 1)
lowest_finished_scores += ((1.0 -
tf.cast(finished_batches, self.dtype)) *
-inf(self.dtype))
worst_finished_score_better_than_best_alive_score = tf.reduce_all(
tf.greater(lowest_finished_scores, best_alive_scores)
)
return tf.logical_and(
not_at_max_decode_length,
tf.logical_not(worst_finished_score_better_than_best_alive_score)
)