本文整理汇总了Python中tensorflow.compat.v1.reduce_all方法的典型用法代码示例。如果您正苦于以下问题:Python v1.reduce_all方法的具体用法?Python v1.reduce_all怎么用?Python v1.reduce_all使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.reduce_all方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _flat_reconstruction_loss
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_all [as 别名]
def _flat_reconstruction_loss(self, flat_x_target, flat_rnn_output):
b_enc, b_dec = tf.split(
flat_rnn_output,
[self._nade.num_hidden, self._output_depth], axis=1)
ll, cond_probs = self._nade.log_prob(
flat_x_target, b_enc=b_enc, b_dec=b_dec)
r_loss = -ll
flat_truth = tf.cast(flat_x_target, tf.bool)
flat_predictions = tf.greater_equal(cond_probs, 0.5)
metric_map = {
'metrics/accuracy':
tf.metrics.mean(
tf.reduce_all(tf.equal(flat_truth, flat_predictions), axis=-1)),
'metrics/recall':
tf.metrics.recall(flat_truth, flat_predictions),
'metrics/precision':
tf.metrics.precision(flat_truth, flat_predictions),
}
return r_loss, metric_map
示例2: get_gradients_to_apply
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_all [as 别名]
def get_gradients_to_apply(self, device_num, gradient_state):
device_grads = gradient_state
tower_grad = device_grads[device_num]
if self.benchmark_cnn.enable_auto_loss_scale and device_num == 0:
# Since we don't aggregate variables in --independent mode, we cannot tell
# if there are NaNs on all GPUs. So we arbitrarily choose to only check
# NaNs on the first GPU.
has_inf_nan_list = []
for grad, _ in tower_grad:
has_inf_nan_list.append(tf.reduce_all(tf.is_finite(grad)))
self.grad_has_inf_nan = tf.logical_not(tf.reduce_all(has_inf_nan_list))
return tower_grad
示例3: preprocess_device_grads
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_all [as 别名]
def preprocess_device_grads(self, device_grads):
compact_grads = (self.benchmark_cnn.params.use_fp16 and
self.benchmark_cnn.params.compact_gradient_transfer)
defer_grads = (self.benchmark_cnn.params.variable_consistency == 'relaxed')
grads_to_reduce = [[g for g, _ in grad_vars] for grad_vars in device_grads]
algorithm = batch_allreduce.algorithm_from_params(self.benchmark_cnn.params)
reduced_grads, self._warmup_ops = algorithm.batch_all_reduce(
grads_to_reduce, self.benchmark_cnn.params.gradient_repacking,
compact_grads, defer_grads, self.benchmark_cnn.params.xla_compile)
if self.benchmark_cnn.enable_auto_loss_scale:
# Check for infs or nans
is_finite_list = []
with tf.name_scope('check_for_inf_and_nan'):
for tower_grads in reduced_grads:
with tf.colocate_with(tower_grads[0]):
# TODO(tanmingxing): Create fused op that takes in a list of tensors
# as input and returns scalar boolean True if there are any
# infs/nans.
is_finite_list.append(tf.reduce_all(
[tf.reduce_all(tf.is_finite(g)) for g in tower_grads]))
self.grad_has_inf_nan = tf.logical_not(tf.reduce_all(is_finite_list))
reduced_device_grads = [[
(g, v) for g, (_, v) in zip(grads, grad_vars)
] for grads, grad_vars in zip(reduced_grads, device_grads)]
return self.benchmark_cnn.devices, reduced_device_grads
示例4: make_outer_masks
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_all [as 别名]
def make_outer_masks(self, outer_masks, input_pianorolls):
"""Returns outer masks, if all zeros created by completion masking."""
outer_masks = tf.to_float(outer_masks)
# If outer_masks come in as all zeros, it means there's no masking,
# which also means nothing will be generated. In this case, use
# completion mask to make new outer masks.
outer_masks = tf.cond(
tf.reduce_all(tf.equal(outer_masks, 0)),
lambda: make_completion_masks(input_pianorolls),
lambda: outer_masks)
return outer_masks
示例5: make_completion_masks
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_all [as 别名]
def make_completion_masks(pianorolls, outer_masks=1.):
pianorolls = tf.to_float(pianorolls)
masks = tf.reduce_all(tf.equal(pianorolls, 0), axis=2, keep_dims=True)
inner_masks = tf.to_float(masks) + 0 * pianorolls
return inner_masks * outer_masks
示例6: initialize
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_all [as 别名]
def initialize(self, name=None):
with tf.name_scope(name, "TrainingHelperInitialize"):
finished = tf.equal(0, self._sequence_length)
all_finished = tf.reduce_all(finished)
next_inputs = tf.cond(
all_finished, lambda: self._zero_inputs,
lambda: tf.nest.map_structure( # pylint:disable=g-long-lambda
lambda inp: inp.read(0), self._input_tas))
return (finished, next_inputs)
示例7: compare_decode_steps
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_all [as 别名]
def compare_decode_steps(decode_steps_a, decode_steps_b):
"""Returns tensor of bools indicated whether decode steps are equal."""
return tf.reduce_all(
tf.stack([
tf.equal(decode_steps_a.action_types, decode_steps_b.action_types),
tf.equal(decode_steps_a.action_ids, decode_steps_b.action_ids),
],
axis=0),
axis=0)
示例8: next_inputs
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_all [as 别名]
def next_inputs(self, time, outputs, state, sample_ids, name=None):
del sample_ids # Unused.
with tf.name_scope(name, "TrainingHelperNextInputs", [time, outputs]):
next_time = time + 1
finished = (next_time >= self._sequence_length)
all_finished = tf.reduce_all(finished)
next_inputs = tf.cond(
all_finished, lambda: self._zero_inputs, lambda: outputs)
return finished, next_inputs, state
示例9: sample
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_all [as 别名]
def sample(news_config: GroverConfig, initial_context, eos_token, min_len, ignore_ids=None, p_for_topp=0.95,
do_topk=False):
"""
V1 version of: sample outputs from a model, and do it all at once
:param news_config: Configuration used to construct the model
:param initial_context: [batch_size, seq_length] that we'll start generating with
:param eos_token: Stop generating if you see this (tf scalar)
:param min_len: min length of sample
:param ignore_ids: NEVER GENERATE THESE [vocab_size]
:return:
"""
batch_size, _ = get_shape_list(initial_context, expected_rank=2)
if ignore_ids is None:
ignore_ids = tf.constant([x == 0 for x in range(news_config.vocab_size)], dtype=tf.bool)
with tf.name_scope('sample_sequence'):
# Initial call to get cache
context_output = initialize_from_context(initial_context, ignore_ids=ignore_ids, news_config=news_config,
p_for_topp=p_for_topp,
do_topk=do_topk)
ctx = context_output['tokens']
cache = context_output['cache']
probs = context_output['probs']
def body(ctx, cache, probs):
""" for whatever reason this didn't work when I ran it on more than one at once... ugh."""
next_outputs = sample_step(ctx[:, -1][:, None], ignore_ids=ignore_ids, news_config=news_config,
batch_size=batch_size, p_for_topp=p_for_topp, cache=cache,
do_topk=do_topk)
# Update everything
new_cache = tf.concat([cache, next_outputs['new_cache']], axis=-2)
new_ids = tf.concat([ctx, next_outputs['new_tokens'][:, None]], axis=1)
new_probs = tf.concat([probs, next_outputs['new_probs'][:, None]], axis=1)
return [new_ids, new_cache, new_probs]
def cond(ctx, cache, probs):
# ctx = tf.Print(ctx,[tf.shape(ctx)])
is_eos = tf.reduce_all(tf.reduce_any(tf.equal(ctx[:,-1:], eos_token), axis=1))
is_len = tf.greater(get_shape_list(ctx)[1], min_len)
return tf.logical_not(tf.logical_and(is_eos, is_len))
tokens, cache, probs = tf.while_loop(
cond=cond, body=body, maximum_iterations=1025 - get_shape_list(ctx)[1],
loop_vars=[ctx, cache, probs],
shape_invariants=[tf.TensorShape([batch_size, None]),
tf.TensorShape(
[batch_size, news_config.num_hidden_layers, 2,
news_config.num_attention_heads,
None, news_config.hidden_size // news_config.num_attention_heads]),
tf.TensorShape([batch_size, None]),
],
back_prop=False,
)
return tokens, probs
示例10: maybe_split_sequence_lengths
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_all [as 别名]
def maybe_split_sequence_lengths(sequence_length, num_splits, total_length):
"""Validates and splits `sequence_length`, if necessary.
Returned value must be used in graph for all validations to be executed.
Args:
sequence_length: A batch of sequence lengths, either sized `[batch_size]`
and equal to either 0 or `total_length`, or sized
`[batch_size, num_splits]`.
num_splits: The scalar number of splits of the full sequences.
total_length: The scalar total sequence length (potentially padded).
Returns:
sequence_length: If input shape was `[batch_size, num_splits]`, returns the
same Tensor. Otherwise, returns a Tensor of that shape with each input
length in the batch divided by `num_splits`.
Raises:
ValueError: If `sequence_length` is not shaped `[batch_size]` or
`[batch_size, num_splits]`.
tf.errors.InvalidArgumentError: If `sequence_length` is shaped
`[batch_size]` and all values are not either 0 or `total_length`.
"""
if sequence_length.shape.ndims == 1:
if total_length % num_splits != 0:
raise ValueError(
'`total_length` must be evenly divisible by `num_splits`.')
with tf.control_dependencies(
[tf.Assert(
tf.reduce_all(
tf.logical_or(tf.equal(sequence_length, 0),
tf.equal(sequence_length, total_length))),
data=[sequence_length])]):
sequence_length = (
tf.tile(tf.expand_dims(sequence_length, axis=1), [1, num_splits]) //
num_splits)
elif sequence_length.shape.ndims == 2:
with tf.control_dependencies([
tf.assert_less_equal(
sequence_length,
tf.constant(total_length // num_splits, tf.int32),
message='Segment length cannot be more than '
'`total_length / num_splits`.')]):
sequence_length = tf.identity(sequence_length)
sequence_length.set_shape([sequence_length.shape[0], num_splits])
else:
raise ValueError(
'Sequence lengths must be given as a vector or a 2D Tensor whose '
'second dimension size matches its initial hierarchical split. Got '
'shape: %s' % sequence_length.shape.as_list())
return sequence_length
示例11: next_inputs
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_all [as 别名]
def next_inputs(self, time, outputs, state, sample_ids, name=None):
with tf.name_scope(name, "ScheduledOutputTrainingHelperNextInputs",
[time, outputs, state, sample_ids]):
(finished, base_next_inputs, state) = (
super(ScheduledOutputTrainingHelper, self).next_inputs(
time=time,
outputs=outputs,
state=state,
sample_ids=sample_ids,
name=name))
sample_ids = tf.cast(sample_ids, tf.bool)
def maybe_sample():
"""Perform scheduled sampling."""
def maybe_concatenate_auxiliary_inputs(outputs_, indices=None):
"""Concatenate outputs with auxiliary inputs, if they exist."""
if self._auxiliary_input_tas is None:
return outputs_
next_time = time + 1
auxiliary_inputs = tf.nest.map_structure(
lambda ta: ta.read(next_time), self._auxiliary_input_tas)
if indices is not None:
auxiliary_inputs = tf.gather_nd(auxiliary_inputs, indices)
return tf.nest.map_structure(
lambda x, y: tf.concat((x, y), -1),
outputs_, auxiliary_inputs)
if self._next_inputs_fn is None:
return tf.where(
sample_ids, maybe_concatenate_auxiliary_inputs(outputs),
base_next_inputs)
where_sampling = tf.cast(
tf.where(sample_ids), tf.int32)
where_not_sampling = tf.cast(
tf.where(tf.logical_not(sample_ids)), tf.int32)
outputs_sampling = tf.gather_nd(outputs, where_sampling)
inputs_not_sampling = tf.gather_nd(base_next_inputs,
where_not_sampling)
sampled_next_inputs = maybe_concatenate_auxiliary_inputs(
self._next_inputs_fn(outputs_sampling), where_sampling)
base_shape = tf.shape(base_next_inputs)
return (tf.scatter_nd(indices=where_sampling,
updates=sampled_next_inputs,
shape=base_shape)
+ tf.scatter_nd(indices=where_not_sampling,
updates=inputs_not_sampling,
shape=base_shape))
all_finished = tf.reduce_all(finished)
no_samples = tf.logical_not(tf.reduce_any(sample_ids))
next_inputs = tf.cond(
tf.logical_or(all_finished, no_samples),
lambda: base_next_inputs, maybe_sample)
return (finished, next_inputs, state)
示例12: ApplyDepthImageDistortions
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_all [as 别名]
def ApplyDepthImageDistortions(depth_images,
random_noise_level = 0.05,
random_noise_apply_probability = 0.5,
scaling_noise = True,
gamma_shape = 1000.0,
gamma_scale_inverse = 1000.0,
min_depth_allowed = 0.25,
max_depth_allowed = 2.5):
"""Apply photometric distortions to the input depth images.
Args:
depth_images: Tensor of shape [batch_size, h, w, 1] containing a batch of
depth images to apply the random photometric distortions to.
random_noise_level: The standard deviation of the Gaussian distribution for
the noise that is applied to the depth image. When 0.0, then no noise is
applied.
random_noise_apply_probability: Probability of applying additive random
noise to the images.
scaling_noise: If True; sample a random variable from a Gamma distribution
to scale the depth image.
gamma_shape: Float; shape parameter of a Gamma distribution.
gamma_scale_inverse: Float; inverse of scale parameter of a Gamma
distribution.
min_depth_allowed: Float; minimum clip value for depth.
max_depth_allowed: Float; max clip value for depth.
Returns:
depth_images: Tensor of shape [batch_size, h, w, 1] containing a
batch of images resulting from applying random photometric distortions to
the inputs.
"""
assert depth_images[0].get_shape().as_list()[-1] == 1
with tf.variable_scope('distortions_depth_images'):
# Add random Gaussian noise.
if random_noise_level:
for i, image in enumerate(depth_images):
img_shape = tf.shape(image)
rnd_noise = tf.random_normal(img_shape, stddev=random_noise_level)
def ReturnImageTensor(value):
return lambda: value
if scaling_noise:
alpha = tf.random_gamma([], gamma_shape, gamma_scale_inverse)
image = tf.cond(
tf.reduce_all(
tf.greater(
tf.random.uniform([1]), random_noise_apply_probability)),
ReturnImageTensor(image),
ReturnImageTensor(alpha * image + rnd_noise))
depth_images[i] = tf.reshape(image, img_shape)
# Clip to valid range.
for i, image in enumerate(depth_images):
depth_images[i] = tf.clip_by_value(image, min_depth_allowed,
max_depth_allowed)
return depth_images
示例13: sample_mask_indices
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_all [as 别名]
def sample_mask_indices(tokens, mask_rate, mask_blacklist, max_num_to_mask):
"""Samples indices to mask.
Args:
tokens (Tensor): 1-D string Tensor.
mask_rate (float): percentage of tokens to mask.
mask_blacklist (Tensor): 1-D string Tensor of tokens to NEVER mask.
max_num_to_mask (int): max # of masks.
Returns:
mask_indices (Tensor): 1-D int32 Tensor of indices to mask.
"""
if mask_rate < 0 or mask_rate > 1:
raise ValueError("mask_rate must be within [0, 1].")
# Compute how many tokens to mask.
num_tokens = tf.size(tokens)
num_to_mask = tf.to_int32(tf.ceil(mask_rate * tf.to_float(num_tokens)))
if mask_rate > 0:
# If masking is enabled, then mask at least one, no matter what.
# Original BERT code does this too.
num_to_mask = tf.maximum(num_to_mask, 1)
num_to_mask = tf.minimum(num_to_mask, max_num_to_mask)
# If there are any [CLS] or [SEP], we count these as part of num_tokens.
# Note that the original implementation of BERT does this as well.
all_indices = tf.range(num_tokens)
# Filter out indices containing CLS and SEP.
allow_masking = tf.reduce_all(
tf.not_equal(tokens, mask_blacklist[:, None]), axis=0)
filtered_indices = tf.boolean_mask(all_indices, allow_masking)
# Randomly select indices without replacement.
shuffled_indices = tf.random.shuffle(filtered_indices)
mask_indices = shuffled_indices[:num_to_mask]
return mask_indices
示例14: _continue_search
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import reduce_all [as 别名]
def _continue_search(self, state):
"""Return whether to continue the search loop.
The loops should terminate when
1) when decode length has been reached, or
2) when the worst score in the finished sequences is better than the best
score in the alive sequences (i.e. the finished sequences are provably
unchanging)
Args:
state: A dictionary with the current loop state.
Returns:
Bool tensor with value True if loop should continue, False if loop should
terminate.
"""
i = state[_StateKeys.CUR_INDEX]
alive_log_probs = state[_StateKeys.ALIVE_LOG_PROBS]
finished_scores = state[_StateKeys.FINISHED_SCORES]
finished_flags = state[_StateKeys.FINISHED_FLAGS]
not_at_max_decode_length = tf.less(i, self.max_decode_length)
# Calculate largest length penalty (the larger penalty, the better score).
max_length_norm = _length_normalization(self.alpha, self.max_decode_length,
dtype=self.dtype)
# Get the best possible scores from alive sequences.
best_alive_scores = alive_log_probs[:, 0] / max_length_norm
# Compute worst score in finished sequences for each batch element
finished_scores *= tf.cast(finished_flags,
self.dtype) # set filler scores to zero
lowest_finished_scores = tf.reduce_min(finished_scores, axis=1)
# If there are no finished sequences in a batch element, then set the lowest
# finished score to -INF for that element.
finished_batches = tf.reduce_any(finished_flags, 1)
lowest_finished_scores += ((1.0 -
tf.cast(finished_batches, self.dtype)) *
-inf(self.dtype))
worst_finished_score_better_than_best_alive_score = tf.reduce_all(
tf.greater(lowest_finished_scores, best_alive_scores)
)
return tf.logical_and(
not_at_max_decode_length,
tf.logical_not(worst_finished_score_better_than_best_alive_score)
)