当前位置: 首页>>代码示例>>Python>>正文


Python v1.random_uniform方法代码示例

本文整理汇总了Python中tensorflow.compat.v1.random_uniform方法的典型用法代码示例。如果您正苦于以下问题:Python v1.random_uniform方法的具体用法?Python v1.random_uniform怎么用?Python v1.random_uniform使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.random_uniform方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testBuildLogitsCifarModel

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import random_uniform [as 别名]
def testBuildLogitsCifarModel(self):
    batch_size = 5
    height, width = 32, 32
    num_classes = 10
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
      logits, end_points = nasnet.build_nasnet_cifar(inputs, num_classes)
    auxlogits = end_points['AuxLogits']
    predictions = end_points['Predictions']
    self.assertListEqual(auxlogits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(predictions.get_shape().as_list(),
                         [batch_size, num_classes]) 
开发者ID:tensorflow,项目名称:benchmarks,代码行数:18,代码来源:nasnet_test.py

示例2: testBuildLogitsMobileModel

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import random_uniform [as 别名]
def testBuildLogitsMobileModel(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
      logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes)
    auxlogits = end_points['AuxLogits']
    predictions = end_points['Predictions']
    self.assertListEqual(auxlogits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(predictions.get_shape().as_list(),
                         [batch_size, num_classes]) 
开发者ID:tensorflow,项目名称:benchmarks,代码行数:18,代码来源:nasnet_test.py

示例3: testBuildLogitsLargeModel

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import random_uniform [as 别名]
def testBuildLogitsLargeModel(self):
    batch_size = 5
    height, width = 331, 331
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
      logits, end_points = nasnet.build_nasnet_large(inputs, num_classes)
    auxlogits = end_points['AuxLogits']
    predictions = end_points['Predictions']
    self.assertListEqual(auxlogits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(predictions.get_shape().as_list(),
                         [batch_size, num_classes]) 
开发者ID:tensorflow,项目名称:benchmarks,代码行数:18,代码来源:nasnet_test.py

示例4: get_synthetic_inputs

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import random_uniform [as 别名]
def get_synthetic_inputs(self, input_name, nclass):
    """Returns the ops to generate synthetic inputs and labels."""
    def users_init_val():
      return tf.random_uniform((self.batch_size, 1), minval=0,
                               maxval=_NUM_USERS_20M, dtype=tf.int32)
    users = tf.Variable(users_init_val, dtype=tf.int32, trainable=False,
                        collections=[tf.GraphKeys.LOCAL_VARIABLES],
                        name='synthetic_users')
    def items_init_val():
      return tf.random_uniform((self.batch_size, 1), minval=0,
                               maxval=_NUM_ITEMS_20M, dtype=tf.int32)
    items = tf.Variable(items_init_val, dtype=tf.int32, trainable=False,
                        collections=[tf.GraphKeys.LOCAL_VARIABLES],
                        name='synthetic_items')

    def labels_init_val():
      return tf.random_uniform((self.batch_size,), minval=0, maxval=2,
                               dtype=tf.int32)
    labels = tf.Variable(labels_init_val, dtype=tf.int32, trainable=False,
                         collections=[tf.GraphKeys.LOCAL_VARIABLES],
                         name='synthetic_labels')

    return [users, items, labels] 
开发者ID:tensorflow,项目名称:benchmarks,代码行数:25,代码来源:official_ncf_model.py

示例5: get_synthetic_inputs

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import random_uniform [as 别名]
def get_synthetic_inputs(self, input_name, nclass):
    inputs = tf.random_uniform(self.get_input_shapes('train')[0],
                               dtype=self.get_input_data_types('train')[0])
    inputs = variables.VariableV1(inputs, trainable=False,
                                  collections=[tf.GraphKeys.LOCAL_VARIABLES],
                                  name=input_name)
    labels = tf.convert_to_tensor(
        np.random.randint(28, size=[self.batch_size, self.max_label_length]))
    input_lengths = tf.convert_to_tensor(
        [self.max_time_steps] * self.batch_size)
    label_lengths = tf.convert_to_tensor(
        [self.max_label_length] * self.batch_size)
    return [inputs, labels, input_lengths, label_lengths]

  # TODO(laigd): support fp16.
  # TODO(laigd): support multiple gpus. 
开发者ID:tensorflow,项目名称:benchmarks,代码行数:18,代码来源:deepspeech.py

示例6: get_synthetic_inputs

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import random_uniform [as 别名]
def get_synthetic_inputs(self, input_name, nclass):
    # Synthetic input should be within [0, 255].
    image_shape, label_shape = self.get_input_shapes('train')
    inputs = tf.truncated_normal(
        image_shape,
        dtype=self.data_type,
        mean=127,
        stddev=60,
        name=self.model_name + '_synthetic_inputs')
    inputs = variables_module.VariableV1(
        inputs, trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES],
        name=input_name)
    labels = tf.random_uniform(
        label_shape,
        minval=0,
        maxval=nclass - 1,
        dtype=tf.int32,
        name=self.model_name + '_synthetic_labels')
    return (inputs, labels) 
开发者ID:tensorflow,项目名称:benchmarks,代码行数:21,代码来源:model.py

示例7: _build

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import random_uniform [as 别名]
def _build(self, x, state):
    prev_keep_mask = state
    shape = tf.shape(x)
    noise = tf.random_uniform(shape, dtype=x.dtype)
    other_mask = tf.floor(self._keep_prob + noise)
    choice_noise = tf.random_uniform(shape, dtype=x.dtype)
    choice = tf.less(choice_noise, self._flip_prob)
    # KLUDGE(melisgl): The client has to pass the last keep_mask from
    # a batch to the next so the mask may end up next to some
    # recurrent cell state. This state is often zero at the beginning
    # and may be periodically zeroed (per example) during training.
    # While zeroing LSTM state is okay, zeroing the dropout mask is
    # not. So instead of forcing every client to deal with this common
    # (?) case, if an all zero mask is detected, then regenerate a
    # fresh mask. This is of course a major hack and won't help with
    # learnt initial states, for example.
    sum_ = tf.reduce_sum(prev_keep_mask, 1, keepdims=True)
    is_initializing = tf.equal(sum_, 0.0)

    self._keep_mask = tf.where(tf.logical_or(choice, is_initializing),
                               other_mask,
                               prev_keep_mask)
    self._time_step += 1
    return x * self._keep_mask / self._keep_prob * self._scaler 
开发者ID:deepmind,项目名称:lamb,代码行数:26,代码来源:dropout.py

示例8: _quantize

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import random_uniform [as 别名]
def _quantize(x, params, randomize=True):
  """Quantize x according to params, optionally randomizing the rounding."""
  if not params.quantize:
    return x

  if not randomize:
    return tf.bitcast(
        tf.cast(x / params.quantization_scale, tf.int16), tf.float16)

  abs_x = tf.abs(x)
  sign_x = tf.sign(x)
  y = abs_x / params.quantization_scale
  y = tf.floor(y + tf.random_uniform(common_layers.shape_list(x)))
  y = tf.minimum(y, tf.int16.max) * sign_x
  q = tf.bitcast(tf.cast(y, tf.int16), tf.float16)
  return q 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:18,代码来源:diet.py

示例9: testShapes

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import random_uniform [as 别名]
def testShapes(self):
    batch_size = 2
    beam_size = 3
    vocab_size = 4
    decode_length = 10

    initial_ids = tf.constant([0, 0])  # GO

    def symbols_to_logits(_):
      # Just return random logits
      return tf.random_uniform((batch_size * beam_size, vocab_size))

    final_ids, final_probs, _ = beam_search.beam_search(
        symbols_to_logits, initial_ids, beam_size, decode_length, vocab_size,
        0.)

    self.assertEqual(final_ids.get_shape().as_list(), [None, beam_size, None])

    self.assertEqual(final_probs.get_shape().as_list(), [batch_size, beam_size]) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:21,代码来源:beam_search_test.py

示例10: uniform_binning_correction

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import random_uniform [as 别名]
def uniform_binning_correction(x, n_bits=8):
  """Replaces x^i with q^i(x) = U(x, x + 1.0 / 256.0).

  Args:
    x: 4-D Tensor of shape (NHWC)
    n_bits: optional.
  Returns:
    x: x ~ U(x, x + 1.0 / 256)
    objective: Equivalent to -q(x)*log(q(x)).
  """
  n_bins = 2**n_bits
  batch_size, height, width, n_channels = common_layers.shape_list(x)
  hwc = float(height * width * n_channels)

  x = x + tf.random_uniform(
      shape=(batch_size, height, width, n_channels),
      minval=0.0, maxval=1.0/n_bins)
  objective = -np.log(n_bins) * hwc * tf.ones(batch_size)
  return x, objective 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:21,代码来源:glow_ops.py

示例11: sample

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import random_uniform [as 别名]
def sample(self, features=None, shape=None):
    del features
    hp = self.hparams
    div_x = 2**hp.num_hidden_layers
    div_y = 1 if self.is1d else 2**hp.num_hidden_layers
    size = [
        hp.batch_size, hp.sample_height // div_x, hp.sample_width // div_y,
        hp.bottleneck_bits
    ]
    size = size if shape is None else shape
    rand = tf.random_uniform(size)
    res = 2.0 * tf.to_float(tf.less(0.5, rand)) - 1.0
    # If you want to set some first bits to a fixed value, do this:
    # fixed = tf.zeros_like(rand) - 1.0
    # nbits = 3
    # res = tf.concat([fixed[:, :, :, :nbits], res[:, :, :, nbits:]], axis=-1)
    return res 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:19,代码来源:autoencoders.py

示例12: bottleneck

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import random_uniform [as 别名]
def bottleneck(self, x):  # pylint: disable=arguments-differ
    hparams = self.hparams
    if hparams.unordered:
      return super(AutoencoderOrderedDiscrete, self).bottleneck(x)
    noise = hparams.bottleneck_noise
    hparams.bottleneck_noise = 0.0  # We'll add noise below.
    x, loss = discretization.parametrized_bottleneck(x, hparams)
    hparams.bottleneck_noise = noise
    if hparams.mode == tf.estimator.ModeKeys.TRAIN:
      # We want a number p such that p^bottleneck_bits = 1 - noise.
      # So log(p) * bottleneck_bits = log(noise)
      log_p = tf.log1p(-float(noise) / 2) / float(hparams.bottleneck_bits)
      # Probabilities of flipping are p, p^2, p^3, ..., p^bottleneck_bits.
      noise_mask = 1.0 - tf.exp(tf.cumsum(tf.zeros_like(x) + log_p, axis=-1))
      # Having the no-noise mask, we can make noise just uniformly at random.
      ordered_noise = tf.random_uniform(tf.shape(x))
      # We want our noise to be 1s at the start and random {-1, 1} bits later.
      ordered_noise = tf.to_float(tf.less(noise_mask, ordered_noise))
      # Now we flip the bits of x on the noisy positions (ordered and normal).
      x *= 2.0 * ordered_noise - 1
    return x, loss 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:23,代码来源:autoencoders.py

示例13: test_invertibility

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import random_uniform [as 别名]
def test_invertibility(self, op, name, dropout=0.0):
    with tf.Graph().as_default():
      tf.set_random_seed(42)
      x = tf.random_uniform(shape=(16, 32, 32, 4))

      if op in [glow_ops.affine_coupling, glow_ops.additive_coupling]:
        with arg_scope([glow_ops.get_dropout], init=False):
          x_inv, _ = op(name, x, reverse=False, dropout=dropout)
          x_inv_inv, _ = op(name, x_inv, reverse=True, dropout=dropout)
      else:
        x_inv, _ = op(name, x, reverse=False)
        x_inv_inv, _ = op(name, x_inv, reverse=True)
      with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        diff = session.run(x - x_inv_inv)
        self.assertTrue(np.allclose(diff, 0.0, atol=1e-5)) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:18,代码来源:glow_ops_test.py

示例14: test_conv2d

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import random_uniform [as 别名]
def test_conv2d(self):
    with tf.Graph().as_default():
      x = 10.0 * tf.random_uniform(shape=(16, 5, 5, 32))

      with arg_scope([glow_ops.actnorm], init=True):
        actnorm_conv2d = glow_ops.conv(
            "actnorm_conv2d", x, output_channels=64, apply_actnorm=True)
        actnorm_zeros2d = glow_ops.conv(
            "actnorm_zeros2d", x, output_channels=64, apply_actnorm=False)

      with tf.Session() as session:
        session.run(tf.global_variables_initializer())

        # test if apply_actnorm is set to True, the first minibatch has
        # zero mean and unit variance.
        actnorm_np, zeros_np = session.run([actnorm_conv2d, actnorm_zeros2d])
        self.assertEqual(actnorm_np.shape, (16, 5, 5, 64))
        mean = np.mean(actnorm_np, axis=(0, 1, 2))
        var = np.var(actnorm_np, axis=(0, 1, 2))
        self.assertTrue(np.allclose(mean, 0.0, atol=1e-5))
        self.assertTrue(np.allclose(var, 1.0, atol=1e-5))

        # test shape in case apply_actnorm is set to False,
        self.assertEqual(zeros_np.shape, (16, 5, 5, 64)) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:26,代码来源:glow_ops_test.py

示例15: _apply_encoder_layer

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import random_uniform [as 别名]
def _apply_encoder_layer(translation_layer, output_depth, nonpadding_list):
  """Applies an encoder layer with basic arguments."""

  input_tensor = tf.random_uniform(
      [_BATCH_SIZE, _TOTAL_SEQUENCE_LENGTH, _INPUT_DEPTH]) / 4.0
  nonpadding = tf.constant(nonpadding_list)
  residual_tensor = tf.random_uniform(
      [_BATCH_SIZE, _TOTAL_SEQUENCE_LENGTH, output_depth])
  hparams = transformer.transformer_base()

  return translation_layer.apply_layer(
      input_tensor,
      residual_tensor,
      output_depth,
      tf.nn.relu,
      hparams,
      "",
      mask_future=False,
      nonpadding=nonpadding,
      layer_preprocess_fn=None,
      postprocess_dropout=True) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:23,代码来源:nas_layers_test.py


注:本文中的tensorflow.compat.v1.random_uniform方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。