本文整理汇总了Python中tensorflow.compat.v1.pad方法的典型用法代码示例。如果您正苦于以下问题:Python v1.pad方法的具体用法?Python v1.pad怎么用?Python v1.pad使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.pad方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _fixed_padding
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import pad [as 别名]
def _fixed_padding(inputs, kernel_size, rate=1):
"""Pads the input along the spatial dimensions independently of input size.
Pads the input such that if it was used in a convolution with 'VALID' padding,
the output would have the same dimensions as if the unpadded input was used
in a convolution with 'SAME' padding.
Args:
inputs: A tensor of size [batch, height_in, width_in, channels].
kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
rate: An integer, rate for atrous convolution.
Returns:
output: A tensor of size [batch, height_out, width_out, channels] with the
input, either intact (if kernel_size == 1) or padded (if kernel_size > 1).
"""
kernel_size_effective = [kernel_size[0] + (kernel_size[0] - 1) * (rate - 1),
kernel_size[0] + (kernel_size[0] - 1) * (rate - 1)]
pad_total = [kernel_size_effective[0] - 1, kernel_size_effective[1] - 1]
pad_beg = [pad_total[0] // 2, pad_total[1] // 2]
pad_end = [pad_total[0] - pad_beg[0], pad_total[1] - pad_beg[1]]
padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg[0], pad_end[0]],
[pad_beg[1], pad_end[1]], [0, 0]])
return padded_inputs
示例2: pad_batch
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import pad [as 别名]
def pad_batch(features, batch_multiple):
"""Pad batch dim of features to nearest multiple of batch_multiple."""
feature = list(features.items())[0][1]
batch_size = tf.shape(feature)[0]
mod = batch_size % batch_multiple
has_mod = tf.cast(tf.cast(mod, tf.bool), tf.int32)
batch_padding = batch_multiple * has_mod - mod
padded_features = {}
for k, feature in features.items():
rank = len(feature.shape)
paddings = [[0, 0] for _ in range(rank)]
paddings[0][1] = batch_padding
padded_feature = tf.pad(feature, paddings)
padded_features[k] = padded_feature
return padded_features
# TODO(lukaszkaiser): refactor the API to not be just a list of self params
# but make sense for other uses too.
示例3: bottom
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import pad [as 别名]
def bottom(self, features):
"""We add padding to the input and output so they are the same.
Length of input and output should be power of 2.
Args:
features: Dictionary of inputs and targets
Returns:
dictionary: Inputs and targets padded with 0 to the length of power of 2.
Both are same length.
"""
pad_len = self.max_pad_length(features)
features["inputs"] = self.pad(features["inputs"], pad_len)
if features.get("targets") is not None:
features["targets"] = self.pad(features["targets"], pad_len)
return super(ShuffleNetwork, self).bottom(features)
示例4: pad
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import pad [as 别名]
def pad(tensor, pad_len):
"""Pad tensor on first dimension to pad_len.
Args:
tensor: input tensor of shape length >= 2
pad_len: pad length
Returns:
tf.Tensor: Padded input tensor.
"""
assert len(tensor.shape) >= 2 # tensor of shape [batch, length, ...]
length = tf.shape(tensor)[1]
padding = [[0, 0], [0, pad_len - length]]
padding += [[0, 0]] * (len(tensor.shape) - 2)
return tf.pad(tensor, padding)
示例5: add_edge_bias
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import pad [as 别名]
def add_edge_bias(x, filter_size):
"""Pad x and concatenates an edge bias across the depth of x.
The edge bias can be thought of as a binary feature which is unity when
the filter is being convolved over an edge and zero otherwise.
Args:
x: Input tensor, shape (NHWC)
filter_size: filter_size to determine padding.
Returns:
x_pad: Input tensor, shape (NHW(c+1))
"""
x_shape = common_layers.shape_list(x)
if filter_size[0] == 1 and filter_size[1] == 1:
return x
a = (filter_size[0] - 1) // 2 # vertical padding size
b = (filter_size[1] - 1) // 2 # horizontal padding size
padding = [[0, 0], [a, a], [b, b], [0, 0]]
x_bias = tf.zeros(x_shape[:-1] + [1])
x = tf.pad(x, padding)
x_pad = tf.pad(x_bias, padding, constant_values=1)
return tf.concat([x, x_pad], axis=3)
示例6: shake_shake_skip_connection
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import pad [as 别名]
def shake_shake_skip_connection(x, output_filters, stride, is_training):
"""Adds a residual connection to the filter x for the shake-shake model."""
curr_filters = common_layers.shape_list(x)[-1]
if curr_filters == output_filters:
return x
stride_spec = [1, stride, stride, 1]
# Skip path 1.
path1 = tf.nn.avg_pool(x, [1, 1, 1, 1], stride_spec, "VALID")
path1 = tf.layers.conv2d(
path1, int(output_filters / 2), (1, 1), padding="SAME", name="path1_conv")
# Skip path 2.
pad_arr = [[0, 0], [0, 1], [0, 1], [0, 0]] # First pad with 0's then crop.
path2 = tf.pad(x, pad_arr)[:, 1:, 1:, :]
path2 = tf.nn.avg_pool(path2, [1, 1, 1, 1], stride_spec, "VALID")
path2 = tf.layers.conv2d(
path2, int(output_filters / 2), (1, 1), padding="SAME", name="path2_conv")
# Concat and apply BN.
final_path = tf.concat(values=[path1, path2], axis=-1)
final_path = tf.layers.batch_normalization(
final_path, training=is_training, name="final_path_bn")
return final_path
示例7: _apply_logic
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import pad [as 别名]
def _apply_logic(self, input_tensor, output_depth, hparams, var_scope_suffix,
nonpadding, mask_future, **unused_kwargs):
"""Applies conv logic to `input_tensor`."""
with tf.variable_scope("%s_conv_%s" % (self._conv_type, var_scope_suffix)):
if mask_future:
# Pad shift the inputs so that temporal information does not leak. This
# must be used in tandem with VALID padding.
pad_amount = int(self._conv_width - 1) * self._dilation_rate
logic_output = tf.pad(
input_tensor, paddings=[[0, 0], [pad_amount, 0], [0, 0]])
padding = "VALID"
else:
logic_output = input_tensor
padding = "SAME"
logic_output = tf.expand_dims(logic_output, 2)
logic_output = self._conv_function(logic_output, output_depth, padding)
logic_output = tf.squeeze(logic_output, 2)
return logic_output
示例8: bytenet_internal
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import pad [as 别名]
def bytenet_internal(inputs, targets, hparams):
"""ByteNet, main step used for training."""
with tf.variable_scope("bytenet"):
# Flatten inputs and extend length by 50%.
inputs = tf.expand_dims(common_layers.flatten4d3d(inputs), axis=2)
extend_length = tf.to_int32(0.5 * tf.to_float(tf.shape(inputs)[1]))
inputs_shape = inputs.shape.as_list()
inputs = tf.pad(inputs, [[0, 0], [0, extend_length], [0, 0], [0, 0]])
inputs_shape[1] = None
inputs.set_shape(inputs_shape) # Don't lose the other shapes when padding.
# Pad inputs and targets to be the same length, divisible by 50.
inputs, targets = common_layers.pad_to_same_length(
inputs, targets, final_length_divisible_by=50)
final_encoder = residual_dilated_conv(inputs, hparams.num_block_repeat,
"SAME", "encoder", hparams)
shifted_targets = common_layers.shift_right(targets)
kernel = (hparams.kernel_height, hparams.kernel_width)
decoder_start = common_layers.conv_block(
tf.concat([final_encoder, shifted_targets], axis=3),
hparams.hidden_size, [((1, 1), kernel)],
padding="LEFT")
return residual_dilated_conv(decoder_start, hparams.num_block_repeat,
"LEFT", "decoder", hparams)
示例9: _import_feature
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import pad [as 别名]
def _import_feature(self, features, mesh, key):
"""Import a feature from the features dictionary into a mtf.Tensor.
Args:
features: a features dictionary
mesh: a Mesh
key: a string
Returns:
a mtf.Tensor with dtype int32 and shape self.batch_dims + self.length_dim
"""
if key not in features:
return None
x = tf.to_int32(features[key])
x = common_layers.expand_squeeze_to_nd(x, 2)
batch_size = mtf.Shape(self.batch_dims).size
x = x[:, :self.length_dim.size]
extra_length = self.length_dim.size - tf.shape(x)[1]
extra_batch = batch_size - tf.shape(x)[0]
x = tf.pad(x, [[0, extra_batch], [0, extra_length]])
mtf_shape = mtf.Shape(self.batch_dims + [self.length_dim])
x = tf.reshape(x, mtf_shape.to_integer_list)
return mtf.import_fully_replicated(mesh, x, mtf_shape, name=key)
示例10: update_internal_states_early
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import pad [as 别名]
def update_internal_states_early(self, internal_states, frames):
"""Update the internal states early in the network in GRU-like way."""
batch_size = common_layers.shape_list(frames[0])[0]
internal_state = internal_states[0][0][:batch_size, :, :, :]
state_activation = tf.concat([internal_state, frames[0]], axis=-1)
state_gate_candidate = tf.layers.conv2d(
state_activation, 2 * self.hparams.recurrent_state_size,
(3, 3), padding="SAME", name="state_conv")
state_gate, state_candidate = tf.split(state_gate_candidate, 2, axis=-1)
state_gate = tf.nn.sigmoid(state_gate)
state_candidate = tf.tanh(state_candidate)
internal_state = internal_state * state_gate
internal_state += state_candidate * (1.0 - state_gate)
max_batch_size = max(_MAX_BATCH, self.hparams.batch_size)
diff_batch_size = max_batch_size - batch_size
internal_state = tf.pad(
internal_state, [[0, diff_batch_size], [0, 0], [0, 0], [0, 0]])
return [[internal_state]]
示例11: categorical_case
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import pad [as 别名]
def categorical_case(pmf, fns, rand=None):
"""Returns the outputs of fns[i] with probability pmf[i].
Args:
pmf: A 1-D tensor of probabilities, the probability mass function.
fns: A list of callables that return tensors, same length as pmf.
rand: An optional scalar between 0.0 and 1.0, the output of an RNG.
Returns:
A tensor, the output of fns[i] with probability pmf[i].
"""
rand = tf.random_uniform([]) if rand is None else rand
cmf = tf.pad(tf.cumsum(pmf), [(1, 0)])
cmf = [cmf[i] for i in range(len(fns) + 1)]
preds = [(rand >= a) & (rand < b) for a, b in zip(cmf[:-1], cmf[1:])]
return tf.case(list(zip(preds, fns)), exclusive=True)
示例12: waves_to_stfts
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import pad [as 别名]
def waves_to_stfts(self, waves):
"""Convert from waves to complex stfts.
Args:
waves: Tensor of the waveform, shape [batch, time, 1].
Returns:
stfts: Complex64 tensor of stft, shape [batch, time, freq, 1].
"""
waves_padded = tf.pad(waves, [[0, 0], [self._pad_l, self._pad_r], [0, 0]])
stfts = tf.signal.stft(
waves_padded[:, :, 0],
frame_length=self._nfft,
frame_step=self._nhop,
fft_length=self._nfft,
pad_end=False)[:, :, :, tf.newaxis]
stfts = stfts[:, :, 1:] if self._discard_dc else stfts[:, :, :-1]
stft_shape = stfts.get_shape().as_list()[1:3]
if tuple(stft_shape) != tuple(self._spec_shape):
raise ValueError(
'Spectrogram returned the wrong shape {}, is not the same as the '
'constructor spec_shape {}.'.format(stft_shape, self._spec_shape))
return stfts
示例13: _call_sampler
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import pad [as 别名]
def _call_sampler(sample_n_fn, sample_shape, name=None):
"""Reshapes vector of samples."""
with tf.name_scope(name, "call_sampler", values=[sample_shape]):
sample_shape = tf.convert_to_tensor(
sample_shape, dtype=tf.int32, name="sample_shape")
# Ensure sample_shape is a vector (vs just a scalar).
pad = tf.cast(tf.equal(tf.rank(sample_shape), 0), tf.int32)
sample_shape = tf.reshape(
sample_shape,
tf.pad(tf.shape(sample_shape),
paddings=[[pad, 0]],
constant_values=1))
samples = sample_n_fn(tf.reduce_prod(sample_shape))
batch_event_shape = tf.shape(samples)[1:]
final_shape = tf.concat([sample_shape, batch_event_shape], 0)
return tf.reshape(samples, final_shape)
示例14: fixed_padding
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import pad [as 别名]
def fixed_padding(inputs, kernel_size, data_format):
"""Pads the input along the spatial dimensions independently of input size.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
Should be a positive integer.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
A tensor with the same format as the input with the data either intact
(if kernel_size == 1) or padded (if kernel_size > 1).
"""
pad_total = kernel_size - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
if data_format == 'channels_first':
padded_inputs = tf.pad(inputs, [[0, 0], [0, 0],
[pad_beg, pad_end], [pad_beg, pad_end]])
else:
padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
[pad_beg, pad_end], [0, 0]])
return padded_inputs
示例15: CausalConv
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import pad [as 别名]
def CausalConv(x, dilation_rate, filters, kernel_size=2, scope = ""):
"""Performs causal dilated 1D convolutions.
Args:
x : Tensor of shape (batch_size, steps, input_dim).
dilation_rate: Dilation rate of convolution.
filters: Number of convolution filters.
kernel_size: Width of convolution kernel. SNAIL paper uses 2 for all
experiments.
scope: Variable scope for this layer.
Returns:
y: Tensor of shape (batch_size, new_steps, D).
"""
with tf.variable_scope(scope):
causal_pad_size = (kernel_size - 1) * dilation_rate
# Pad sequence dimension.
x = tf.pad(x, [[0, 0], [causal_pad_size, 0], [0, 0]])
return layers.conv1d(
x,
filters,
kernel_size=kernel_size,
padding="VALID",
rate=dilation_rate)