本文整理汇总了Python中tensorflow.compat.v1.maximum方法的典型用法代码示例。如果您正苦于以下问题:Python v1.maximum方法的具体用法?Python v1.maximum怎么用?Python v1.maximum使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.maximum方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: average_sharded_losses
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import maximum [as 别名]
def average_sharded_losses(sharded_losses):
"""Average losses across datashards.
Args:
sharded_losses: list<dict<str loss_name, Tensor loss>>. The loss
can be a single Tensor or a 2-tuple (numerator and denominator).
Returns:
losses: dict<str loss_name, Tensor avg_loss>
"""
losses = {}
for loss_name in sorted(sharded_losses[0]):
all_shards = [shard_losses[loss_name] for shard_losses in sharded_losses]
if isinstance(all_shards[0], tuple):
sharded_num, sharded_den = zip(*all_shards)
mean_loss = (
tf.add_n(sharded_num) / tf.maximum(
tf.cast(1.0, sharded_den[0].dtype), tf.add_n(sharded_den)))
else:
mean_loss = tf.reduce_mean(all_shards)
losses[loss_name] = mean_loss
return losses
示例2: bottleneck
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import maximum [as 别名]
def bottleneck(self, x):
hparams = self.hparams
z_size = hparams.bottleneck_bits
x_shape = common_layers.shape_list(x)
with tf.variable_scope("vae"):
mu = tf.layers.dense(x, z_size, name="mu")
if hparams.mode != tf.estimator.ModeKeys.TRAIN:
return mu, 0.0 # No sampling or kl loss on eval.
log_sigma = tf.layers.dense(x, z_size, name="log_sigma")
epsilon = tf.random_normal(x_shape[:-1] + [z_size])
z = mu + tf.exp(log_sigma / 2) * epsilon
kl = 0.5 * tf.reduce_mean(
tf.expm1(log_sigma) + tf.square(mu) - log_sigma, axis=-1)
free_bits = z_size // 4
kl_loss = tf.reduce_mean(tf.maximum(kl - free_bits, 0.0))
return z, kl_loss * hparams.kl_beta
示例3: rank_loss
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import maximum [as 别名]
def rank_loss(sentence_emb, image_emb, margin=0.2):
"""Experimental rank loss, thanks to kkurach@ for the code."""
with tf.name_scope("rank_loss"):
# Normalize first as this is assumed in cosine similarity later.
sentence_emb = tf.nn.l2_normalize(sentence_emb, 1)
image_emb = tf.nn.l2_normalize(image_emb, 1)
# Both sentence_emb and image_emb have size [batch, depth].
scores = tf.matmul(image_emb, tf.transpose(sentence_emb)) # [batch, batch]
diagonal = tf.diag_part(scores) # [batch]
cost_s = tf.maximum(0.0, margin - diagonal + scores) # [batch, batch]
cost_im = tf.maximum(
0.0, margin - tf.reshape(diagonal, [-1, 1]) + scores) # [batch, batch]
# Clear diagonals.
batch_size = tf.shape(sentence_emb)[0]
empty_diagonal_mat = tf.ones_like(cost_s) - tf.eye(batch_size)
cost_s *= empty_diagonal_mat
cost_im *= empty_diagonal_mat
return tf.reduce_mean(cost_s) + tf.reduce_mean(cost_im)
示例4: lengths_to_area_mask
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import maximum [as 别名]
def lengths_to_area_mask(feature_length, length, max_area_size):
"""Generates a non-padding mask for areas based on lengths.
Args:
feature_length: a tensor of [batch_size]
length: the length of the batch
max_area_size: the maximum area size considered
Returns:
mask: a tensor in shape of [batch_size, num_areas]
"""
paddings = tf.cast(tf.expand_dims(
tf.logical_not(
tf.sequence_mask(feature_length, maxlen=length)), 2), tf.float32)
_, _, area_sum, _, _ = compute_area_features(paddings,
max_area_width=max_area_size)
mask = tf.squeeze(tf.logical_not(tf.cast(area_sum, tf.bool)), [2])
return mask
示例5: get_max_num_classes
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import maximum [as 别名]
def get_max_num_classes(self):
"""Compute the maximum number of classes any subtask has.
This is useful for modifying the size of the softmax to include the output
labels for the classification tasks. Currently, labels from different tasks
are overloaded.
Returns:
num: Highest number of output classes in any text classification sub-task
within this MultiProblem.
"""
num = 0
for task in self.task_list:
if hasattr(task, "num_classes"):
if num < task.num_classes:
num = task.num_classes
return num
示例6: __init__
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import maximum [as 别名]
def __init__(self, regularizers_to_group):
"""Creates an instance.
Args:
regularizers_to_group: A list of generic_regularizers.OpRegularizer
objects.Their regularization_vector (alive_vector) are expected to be of
the same length.
Raises:
ValueError: regularizers_to_group is not of length at least 2.
"""
if len(regularizers_to_group) < 2:
raise ValueError('Groups must be of at least size 2.')
first = regularizers_to_group[0]
regularization_vector = first.regularization_vector
alive_vector = first.alive_vector
for index in range(1, len(regularizers_to_group)):
regularizer = regularizers_to_group[index]
regularization_vector = tf.maximum(regularization_vector,
regularizer.regularization_vector)
alive_vector = tf.logical_or(alive_vector, regularizer.alive_vector)
self._regularization_vector = regularization_vector
self._alive_vector = alive_vector
示例7: _lower_bound
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import maximum [as 别名]
def _lower_bound(inputs, bound, name=None):
"""Same as tf.maximum, but with helpful gradient for inputs < bound.
The gradient is overwritten so that it is passed through if the input is not
hitting the bound. If it is, only gradients that push `inputs` higher than
the bound are passed through. No gradients are passed through to the bound.
Args:
inputs: input tensor
bound: lower bound for the input tensor
name: name for this op
Returns:
tf.maximum(inputs, bound)
"""
with ops.name_scope(name, 'GDNLowerBound', [inputs, bound]) as scope:
inputs = ops.convert_to_tensor(inputs, name='inputs')
bound = ops.convert_to_tensor(bound, name='bound')
with ops.get_default_graph().gradient_override_map(
{'Maximum': 'GDNLowerBound'}):
return math_ops.maximum(inputs, bound, name=scope)
示例8: intersection
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import maximum [as 别名]
def intersection(boxlist1, boxlist2, scope=None):
"""Compute pairwise intersection areas between boxes.
Args:
boxlist1: BoxList holding N boxes
boxlist2: BoxList holding M boxes
scope: name scope.
Returns:
a tensor with shape [N, M] representing pairwise intersections
"""
with tf.name_scope(scope, 'Intersection'):
y_min1, x_min1, y_max1, x_max1 = tf.split(
value=boxlist1.get(), num_or_size_splits=4, axis=1)
y_min2, x_min2, y_max2, x_max2 = tf.split(
value=boxlist2.get(), num_or_size_splits=4, axis=1)
all_pairs_min_ymax = tf.minimum(y_max1, tf.transpose(y_max2))
all_pairs_max_ymin = tf.maximum(y_min1, tf.transpose(y_min2))
intersect_heights = tf.maximum(0.0, all_pairs_min_ymax - all_pairs_max_ymin)
all_pairs_min_xmax = tf.minimum(x_max1, tf.transpose(x_max2))
all_pairs_max_xmin = tf.maximum(x_min1, tf.transpose(x_min2))
intersect_widths = tf.maximum(0.0, all_pairs_min_xmax - all_pairs_max_xmin)
return intersect_heights * intersect_widths
示例9: apply_linear
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import maximum [as 别名]
def apply_linear(self, wrapper, w, b):
"""Propagates the bounds through a linear layer.
Args:
wrapper: Contains prior bounds from a previous iteration.
w: 2D tensor of shape (input_size, output_size) containing
weights for the linear layer.
b: 1D tensor of shape (output_size) containing biases for the linear
layer, or `None` if no bias.
Returns:
Output bounds.
"""
w_pos = tf.maximum(w, 0)
w_neg = tf.minimum(w, 0)
lb = (tf.matmul(self.lower_offset, w_pos) +
tf.matmul(self.upper_offset, w_neg))
ub = (tf.matmul(self.upper_offset, w_pos) +
tf.matmul(self.lower_offset, w_neg))
nominal_out = tf.matmul(self.nominal, w)
if b is not None:
nominal_out += b
return RelativeIntervalBounds(lb, ub, nominal_out)
示例10: concretize
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import maximum [as 别名]
def concretize(self):
"""Returns lower and upper interval bounds."""
lb = ub = None
if self.lower is not None:
lb = (
tf.einsum('nsi,ni->ns',
self._reshape_to_rank(tf.maximum(self.lower.w, 0), 3),
self._reshape_to_rank(self.lower.lower, 2)) +
tf.einsum('nsi,ni->ns',
self._reshape_to_rank(tf.minimum(self.lower.w, 0), 3),
self._reshape_to_rank(self.lower.upper, 2)))
lb += self.lower.b
if self.upper is not None:
ub = (
tf.einsum('nsi,ni->ns',
self._reshape_to_rank(tf.maximum(self.upper.w, 0), 3),
self._reshape_to_rank(self.upper.upper, 2)) +
tf.einsum('nsi,ni->ns',
self._reshape_to_rank(tf.minimum(self.upper.w, 0), 3),
self._reshape_to_rank(self.upper.lower, 2)))
ub += self.upper.b
return bounds.IntervalBounds(lb, ub)
示例11: apply_increasing_monotonic_fn
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import maximum [as 别名]
def apply_increasing_monotonic_fn(self, wrapper, fn, *args):
"""Propagate CROWN bounds backward through a increasing monotonic fn."""
# Function _get_monotonic_fn_bound returns matrix and bias term for linear
# relaxation.
(ub_scaling_matrix, lb_scaling_matrix,
ub_bias, lb_bias) = self._get_monotonic_fn_bound(wrapper, fn)
def _propagate_monotonic_fn(bound, ub_mult, lb_mult):
# Matrix multiplication by a diagonal matrix.
new_bound_w = ub_mult * ub_scaling_matrix + lb_mult * lb_scaling_matrix
# Matrix vector product for the bias term. ub_bias or lb_bias might be 0
# or a constant, or need broadcast. They will be handled optimally.
b = self._matvec(ub_mult, ub_bias) + self._matvec(lb_mult, lb_bias)
return fastlin.LinearExpression(w=new_bound_w, b=bound.b + b,
lower=wrapper.input_bounds.lower,
upper=wrapper.input_bounds.upper)
# Multiplies w to upper or lower scaling terms according to its sign.
ub_expr = _propagate_monotonic_fn(
self.upper, tf.maximum(self.upper.w, 0),
tf.minimum(self.upper.w, 0)) if self.upper else None
lb_expr = _propagate_monotonic_fn(
self.lower, tf.minimum(self.lower.w, 0),
tf.maximum(self.lower.w, 0)) if self.lower else None
return BackwardBounds(lb_expr, ub_expr)
示例12: _concretize_bounds
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import maximum [as 别名]
def _concretize_bounds(lower, upper):
"""Returns lower and upper interval bounds."""
if len(lower.b.shape) == 2:
equation = 'ijk,ij->ik'
elif len(lower.b.shape) == 3:
equation = 'ijnc,ij->inc'
elif len(lower.b.shape) == 4:
equation = 'ijhwc,ij->ihwc'
else:
raise NotImplementedError('Shape unsupported: {}'.format(lower.b.shape))
lb = (tf.einsum(equation, tf.maximum(lower.w, 0), lower.lower) +
tf.einsum(equation, tf.minimum(lower.w, 0), lower.upper) +
lower.b)
ub = (tf.einsum(equation, tf.maximum(upper.w, 0), upper.upper) +
tf.einsum(equation, tf.minimum(upper.w, 0), upper.lower) +
upper.b)
return lb, ub
示例13: get_noised_result
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import maximum [as 别名]
def get_noised_result(self, sample_state, global_state):
"""See base class."""
noised_vectors, sum_state = self._sum_query.get_noised_result(
sample_state.sum_state, global_state.sum_state)
del sum_state # To be set explicitly later when we know the new clip.
new_l2_norm_clip, new_quantile_estimator_state = (
self._quantile_estimator_query.get_noised_result(
sample_state.quantile_estimator_state,
global_state.quantile_estimator_state))
new_l2_norm_clip = tf.maximum(new_l2_norm_clip, 0.0)
new_sum_stddev = new_l2_norm_clip * global_state.noise_multiplier
new_sum_query_state = self._sum_query.make_global_state(
l2_norm_clip=new_l2_norm_clip,
stddev=new_sum_stddev)
new_global_state = self._GlobalState(
global_state.noise_multiplier,
new_sum_query_state,
new_quantile_estimator_state)
return noised_vectors, new_global_state
示例14: truncated_rsqrt
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import maximum [as 别名]
def truncated_rsqrt(step,
total_train_steps,
warmup_steps=10000):
"""Noam's favorite learning-rate schedule.
rsqrt(max(step_num, warmup_steps)
Args:
step: a tf.scalar representing the step we want the learning rate for.
total_train_steps: a number, the total number of training steps.
warmup_steps: a number
Returns:
a tf.Scalar, the learning rate for the step.
"""
del total_train_steps
step_num = tf.cast(step, tf.float32)
return tf.math.rsqrt(tf.maximum(step_num, warmup_steps))
示例15: calc_iou_tensor
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import maximum [as 别名]
def calc_iou_tensor(boxes1, boxes2):
"""Calculation of IoU based on two boxes tensor.
Reference to https://github.com/kuangliu/pytorch-ssd
Args:
boxes1: shape (N, 4), four coordinates of N boxes
boxes2: shape (M, 4), four coordinates of M boxes
Returns:
IoU: shape (N, M), IoU of the i-th box in `boxes1` and j-th box in `boxes2`
"""
b1_left, b1_top, b1_right, b1_bottom = tf.split(boxes1, 4, axis=1)
b2_left, b2_top, b2_right, b2_bottom = tf.split(boxes2, 4, axis=1)
# Shape of intersect_* (N, M)
intersect_left = tf.maximum(b1_left, tf.transpose(b2_left))
intersect_top = tf.maximum(b1_top, tf.transpose(b2_top))
intersect_right = tf.minimum(b1_right, tf.transpose(b2_right))
intersect_bottom = tf.minimum(b1_bottom, tf.transpose(b2_bottom))
boxes1_area = (b1_right - b1_left) * (b1_bottom - b1_top)
boxes2_area = (b2_right - b2_left) * (b2_bottom - b2_top)
intersect = tf.multiply(tf.maximum((intersect_right - intersect_left), 0),
tf.maximum((intersect_bottom - intersect_top), 0))
union = boxes1_area + tf.transpose(boxes2_area) - intersect
iou = intersect / union
return iou