本文整理汇总了Python中tensorflow.compat.v1.matmul方法的典型用法代码示例。如果您正苦于以下问题:Python v1.matmul方法的具体用法?Python v1.matmul怎么用?Python v1.matmul使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.matmul方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _build_tiled_linear
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import matmul [as 别名]
def _build_tiled_linear(self, inputs, input_name_and_sizes,
output_name_and_sizes, add_bias):
# pylint: disable=missing-docstring
def split_output(output):
if len(output_name_and_sizes) == 1:
return output
elif len(set([size for _, size in output_name_and_sizes])) == 1:
# This is a bit faster than several tf.slice calls.
return tf.split(output, len(output_name_and_sizes), axis=1)
else:
outputs = []
offset = 0
for _, output_size in output_name_and_sizes:
outputs.append(tf.slice(output, [0, offset], [-1, output_size]))
offset += output_size
return outputs
weights = self._ensure_weights()
if len(inputs) > 1:
inputs = tf.concat(inputs, 1)
if add_bias:
biases = self._ensure_biases()
return split_output(tf.nn.xw_plus_b(inputs, weights, biases))
else:
return split_output(tf.matmul(inputs, weights))
示例2: vq_nearest_neighbor
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import matmul [as 别名]
def vq_nearest_neighbor(x, hparams):
"""Find the nearest element in means to elements in x."""
bottleneck_size = 2**hparams.bottleneck_bits
means = hparams.means
x_norm_sq = tf.reduce_sum(tf.square(x), axis=-1, keepdims=True)
means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keepdims=True)
scalar_prod = tf.matmul(x, means, transpose_b=True)
dist = x_norm_sq + tf.transpose(means_norm_sq) - 2 * scalar_prod
if hparams.bottleneck_kind == "em":
x_means_idx = tf.multinomial(-dist, num_samples=hparams.num_samples)
x_means_hot = tf.one_hot(
x_means_idx, depth=bottleneck_size)
x_means_hot = tf.reduce_mean(x_means_hot, axis=1)
else:
x_means_idx = tf.argmax(-dist, axis=-1)
x_means_hot = tf.one_hot(x_means_idx, depth=bottleneck_size)
x_means = tf.matmul(x_means_hot, means)
e_loss = tf.reduce_mean(tf.squared_difference(x, tf.stop_gradient(x_means)))
return x_means_hot, e_loss
示例3: attn
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import matmul [as 别名]
def attn(image_feat, query, hparams, name="attn"):
"""Attention on image feature with question as query."""
with tf.variable_scope(name, "attn", values=[image_feat, query]):
attn_dim = hparams.attn_dim
num_glimps = hparams.num_glimps
num_channels = common_layers.shape_list(image_feat)[-1]
if len(common_layers.shape_list(image_feat)) == 4:
image_feat = common_layers.flatten4d3d(image_feat)
query = tf.expand_dims(query, 1)
image_proj = common_attention.compute_attention_component(
image_feat, attn_dim, name="image_proj")
query_proj = common_attention.compute_attention_component(
query, attn_dim, name="query_proj")
h = tf.nn.relu(image_proj + query_proj)
h_proj = common_attention.compute_attention_component(
h, num_glimps, name="h_proj")
p = tf.nn.softmax(h_proj, axis=1)
image_ave = tf.matmul(image_feat, p, transpose_a=True)
image_ave = tf.reshape(image_ave, [-1, num_channels*num_glimps])
return image_ave
示例4: compute_last_embedding
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import matmul [as 别名]
def compute_last_embedding(input_embeddings, input_lengths, hparams):
"""Computes average of last K embedding.
Args:
input_embeddings: <tf.float32>[bs, max_seq_len, emb_dim]
input_lengths: <tf.int64>[bs, 1]
hparams: model hparams
Returns:
last_k_embedding: <tf.float32>[bs, emb_dim]
"""
max_seq_len = tf.shape(input_embeddings)[1]
# <tf.float32>[bs, 1, max_seq_len]
mask = tf.sequence_mask(input_lengths, max_seq_len, dtype=tf.float32)
del_mask = tf.sequence_mask(
input_lengths - hparams.last_k, max_seq_len, dtype=tf.float32)
final_mask = mask - del_mask
# <tf.float32>[bs, 1, emb_dim]
sum_embedding = tf.matmul(final_mask, input_embeddings)
# <tf.float32>[bs, 1, emb_dim]
last_k_embedding = sum_embedding / tf.to_float(
tf.expand_dims(
tf.ones([tf.shape(input_embeddings)[0], 1]) * hparams.last_k, 2))
# <tf.float32>[bs, dim]
return tf.squeeze(last_k_embedding, 1)
示例5: compute_average_embedding
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import matmul [as 别名]
def compute_average_embedding(input_embeddings, input_lengths):
"""Computes bag-of-words embedding.
Args:
input_embeddings: <tf.float32>[bs, max_seq_len, emb_dim]
input_lengths: <tf.int64>[bs, 1]
Returns:
bow_embedding: <tf.float32>[bs, emb_dim]
"""
max_seq_len = tf.shape(input_embeddings)[1]
# <tf.float32>[bs, 1, max_seq_len]
mask = tf.sequence_mask(input_lengths, max_seq_len, dtype=tf.float32)
# <tf.float32>[bs, 1, emb_dim]
sum_embedding = tf.matmul(mask, input_embeddings)
# <tf.float32>[bs, 1, emb_dim]
avg_embedding = sum_embedding / tf.to_float(tf.expand_dims(input_lengths, 2))
# <tf.float32>[bs, dim]
return tf.squeeze(avg_embedding, 1)
示例6: smoothing_cross_entropy_factored
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import matmul [as 别名]
def smoothing_cross_entropy_factored(a, b, labels, confidence):
"""Memory-efficient computation of smoothing cross-entropy.
Avoids realizing the entire logits matrix at once.
Args:
a: a Tensor with shape [batch, inner_dim]
b: a Tensor with shape [vocab_size, inner_dim]
labels: an integer Tensor with shape [batch]
confidence: a float
Returns:
A Tensor with shape [batch]
"""
num_splits = 16
vocab_size = shape_list(b)[0]
labels = approximate_split(labels, num_splits)
a = approximate_split(a, num_splits)
parts = []
for part in range(num_splits):
with tf.control_dependencies(parts[-1:]):
logits = tf.matmul(a[part], b, transpose_b=True)
parts.append(
smoothing_cross_entropy(logits, labels[part], vocab_size, confidence))
return tf.concat(parts, 0)
示例7: dense_weightnorm
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import matmul [as 别名]
def dense_weightnorm(
name, x, n_out, x_mask, init_scale, init, dtype=tf.float32):
"""Dense layer with weight normalization."""
n_in = common_layers.shape_list(x)[2]
eps = tf.keras.backend.epsilon()
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
v = tf.get_variable(
"v", [n_in, n_out], dtype,
initializer=tf.random_normal_initializer(0, 0.05), trainable=True)
v = v / tf.norm(v, axis=0, keepdims=True)
t = tf.matmul(x, v) # [B, L, n_out]
mean, var = moments_over_bl(t, x_mask)
g_init = init_scale / (tf.sqrt(var) + eps)
g = get_variable_ddi(
"g", [n_out], g_init, init,
initializer=tf.zeros_initializer, dtype=dtype, trainable=True)
b = get_variable_ddi(
"b", [n_out], -mean*g_init, init,
initializer=tf.zeros_initializer, dtype=dtype, trainable=True)
w = g * v
y = tf.matmul(x, w) + b
tf.summary.histogram("_g", g)
return y
示例8: embedding_lookup
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import matmul [as 别名]
def embedding_lookup(self, x, means):
"""Compute nearest neighbors and loss for training the embeddings.
Args:
x: Batch of encoder continuous latent states sliced/projected into
shape
[-1, num_blocks, block_dim].
means: Embedding means.
Returns:
The nearest neighbor in one hot form, the nearest neighbor
itself, the
commitment loss, embedding training loss.
"""
x_means_hot = self.nearest_neighbor(x, means)
x_means_hot_flat = tf.reshape(
x_means_hot, [-1, self.hparams.num_blocks, self.hparams.block_v_size])
x_means = tf.matmul(tf.transpose(x_means_hot_flat, perm=[1, 0, 2]), means)
x_means = tf.transpose(x_means, [1, 0, 2])
q_loss = tf.reduce_mean(
tf.squared_difference(tf.stop_gradient(x), x_means))
e_loss = tf.reduce_mean(
tf.squared_difference(x, tf.stop_gradient(x_means)))
return x_means_hot, x_means, q_loss, e_loss
示例9: compute_values
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import matmul [as 别名]
def compute_values(edge_compatibility, v):
"""Compute values. If edge compatibilities is just adjacency, we get ggnn.
Args:
edge_compatibility: A tensor of shape [batch, num_transforms, length, depth]
v: A tensor of shape [batch, num_transforms, length, depth]
Returns:
output: A [batch, length, depth] tensor
"""
# Computes the incoming value vectors for each node by weighting them
# according to the attention weights. These values are still segregated by
# edge type.
# Shape = [B, T, N, V].
all_edge_values = tf.matmul(tf.to_float(edge_compatibility), v)
# Combines the weighted value vectors together across edge types into a
# single N x V matrix for each batch.
output = tf.reduce_sum(all_edge_values, axis=1) # Shape [B, N, V].
return output
示例10: _address_content
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import matmul [as 别名]
def _address_content(self, x):
"""Address the memory based on content similarity.
Args:
x: a tensor in the shape of [batch_size, length, depth].
Returns:
the logits for each memory entry [batch_size, length, memory_size].
"""
mem_keys = tf.layers.dense(self.mem_vals, self.key_depth,
bias_initializer=tf.constant_initializer(1.0),
name="mem_key")
mem_query = tf.layers.dense(x, self.key_depth,
bias_initializer=tf.constant_initializer(1.0),
name="mem_query")
norm = tf.matmul(self._norm(mem_query), self._norm(mem_keys),
transpose_b=True)
dot_product = tf.matmul(mem_query, mem_keys, transpose_b=True)
cos_dist = tf.div(dot_product, norm + 1e-7, name="cos_dist")
access_logits = self.sharpen_factor * cos_dist
return access_logits
示例11: testFlopRegularizerDontConvertToVariable
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import matmul [as 别名]
def testFlopRegularizerDontConvertToVariable(self):
tf.reset_default_graph()
tf.set_random_seed(1234)
x = tf.constant(1.0, shape=[2, 6], name='x', dtype=tf.float32)
w = tf.Variable(tf.truncated_normal([6, 4], stddev=1.0), use_resource=True)
net = tf.matmul(x, w)
# Create FLOPs network regularizer.
threshold = 0.9
flop_reg = flop_regularizer.GroupLassoFlopsRegularizer([net.op], threshold,
0)
with self.cached_session():
tf.global_variables_initializer().run()
flop_reg.get_regularization_term().eval()
示例12: testMatMul2D
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import matmul [as 别名]
def testMatMul2D(self, size):
inputs = tf.zeros((13, 2))
handler = matmul_source_op_handler.MatMulSourceOpHandler(0.1)
kernel = tf.constant([[1, 2, 3], [4, 5, 6]], dtype=tf.float32)
x = tf.matmul(inputs, kernel, transpose_b=False, name='MatMul')
op_slice = orm.OpSlice(x.op, orm.Slice(0, size))
transpose_kernel = tf.constant([[1, 4], [2, 5], [3, 6]], dtype=tf.float32)
x_other = tf.matmul(
inputs,
transpose_kernel,
transpose_b=True,
name='MatMulTransposedKernel')
op_slice_other = orm.OpSlice(x_other.op, orm.Slice(0, size))
self.assertAllClose(
handler.create_regularizer(op_slice).regularization_vector,
handler.create_regularizer(op_slice_other).regularization_vector)
示例13: get_mlm_logits
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import matmul [as 别名]
def get_mlm_logits(input_tensor, albert_config, mlm_positions, output_weights):
"""From run_pretraining.py."""
input_tensor = gather_indexes(input_tensor, mlm_positions)
with tf.variable_scope("cls/predictions"):
# We apply one more non-linear transformation before the output layer.
# This matrix is not used after pre-training.
with tf.variable_scope("transform"):
input_tensor = tf.layers.dense(
input_tensor,
units=albert_config.embedding_size,
activation=modeling.get_activation(albert_config.hidden_act),
kernel_initializer=modeling.create_initializer(
albert_config.initializer_range))
input_tensor = modeling.layer_norm(input_tensor)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
output_bias = tf.get_variable(
"output_bias",
shape=[albert_config.vocab_size],
initializer=tf.zeros_initializer())
logits = tf.matmul(
input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
return logits
示例14: get_sentence_order_logits
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import matmul [as 别名]
def get_sentence_order_logits(input_tensor, albert_config):
"""Get loss and log probs for the next sentence prediction."""
# Simple binary classification. Note that 0 is "next sentence" and 1 is
# "random sentence". This weight matrix is not used after pre-training.
with tf.variable_scope("cls/seq_relationship"):
output_weights = tf.get_variable(
"output_weights",
shape=[2, albert_config.hidden_size],
initializer=modeling.create_initializer(
albert_config.initializer_range))
output_bias = tf.get_variable(
"output_bias", shape=[2], initializer=tf.zeros_initializer())
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
return logits
示例15: get_mlm_logits
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import matmul [as 别名]
def get_mlm_logits(model, albert_config, mlm_positions):
"""From run_pretraining.py."""
input_tensor = gather_indexes(model.get_sequence_output(), mlm_positions)
with tf.variable_scope("cls/predictions"):
# We apply one more non-linear transformation before the output layer.
# This matrix is not used after pre-training.
with tf.variable_scope("transform"):
input_tensor = tf.layers.dense(
input_tensor,
units=albert_config.embedding_size,
activation=modeling.get_activation(albert_config.hidden_act),
kernel_initializer=modeling.create_initializer(
albert_config.initializer_range))
input_tensor = modeling.layer_norm(input_tensor)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
output_bias = tf.get_variable(
"output_bias",
shape=[albert_config.vocab_size],
initializer=tf.zeros_initializer())
logits = tf.matmul(
input_tensor, model.get_embedding_table(), transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
return logits