本文整理汇总了Python中tensorflow.compat.v1.log方法的典型用法代码示例。如果您正苦于以下问题:Python v1.log方法的具体用法?Python v1.log怎么用?Python v1.log使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.log方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_optimizer
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import log [as 别名]
def get_optimizer(params, learning_rate):
"""Returns the optimizer that should be used based on params."""
if params.optimizer == 'momentum':
mlperf.logger.log(key=mlperf.tags.OPT_NAME,
value=mlperf.tags.SGD_WITH_MOMENTUM)
mlperf.logger.log(key=mlperf.tags.OPT_MOMENTUM, value=params.momentum)
opt = tf.train.MomentumOptimizer(
learning_rate, params.momentum, use_nesterov=True)
elif params.optimizer == 'sgd':
mlperf.logger.log(key=mlperf.tags.OPT_NAME, value=mlperf.tags.SGD)
opt = tf.train.GradientDescentOptimizer(learning_rate)
elif params.optimizer == 'rmsprop':
opt = tf.train.RMSPropOptimizer(
learning_rate,
params.rmsprop_decay,
momentum=params.rmsprop_momentum,
epsilon=params.rmsprop_epsilon)
elif params.optimizer == 'adam':
opt = tf.train.AdamOptimizer(learning_rate, params.adam_beta1,
params.adam_beta2, params.adam_epsilon)
else:
raise ValueError('Optimizer "{}" was not recognized'.
format(params.optimizer))
return opt
示例2: testTwoClassLogLikelihoodVersusOldImplementation
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import log [as 别名]
def testTwoClassLogLikelihoodVersusOldImplementation(self):
def alt_two_class_log_likelihood_impl(predictions, labels):
float_labels = tf.cast(labels, dtype=tf.float64)
float_predictions = tf.cast(tf.squeeze(predictions), dtype=tf.float64)
# likelihood should be just p for class 1, and 1 - p for class 0.
# signs is 1 for class 1, and -1 for class 0
signs = 2 * float_labels - tf.ones_like(float_labels)
# constant_term is 1 for class 0, and 0 for class 1.
constant_term = tf.ones_like(float_labels) - float_labels
likelihoods = constant_term + signs * float_predictions
log_likelihoods = tf.log(likelihoods)
avg_log_likelihood = tf.reduce_mean(log_likelihoods)
return avg_log_likelihood
predictions = np.random.rand(1, 10, 1)
targets = np.random.randint(2, size=10)
with self.test_session() as session:
new_log_likelihood, _ = metrics.two_class_log_likelihood(
predictions, targets)
alt_log_likelihood = alt_two_class_log_likelihood_impl(
predictions, targets)
new_impl, alt_impl = session.run([new_log_likelihood, alt_log_likelihood])
self.assertAlmostEqual(new_impl, alt_impl)
示例3: shuffle_layer
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import log [as 别名]
def shuffle_layer(inputs, shuffle_fn=rol):
"""Shuffles the elements according to bitwise left or right rotation.
Args:
inputs: Tensor input from previous layer
shuffle_fn: Shift function rol or ror
Returns:
tf.Tensor: Inputs shifted according to shuffle_fn
"""
length = tf.shape(inputs)[1]
n_bits = tf.log(tf.cast(length - 1, tf.float32)) / tf.log(2.0)
n_bits = tf.cast(n_bits, tf.int32) + 1
indices = tf.range(0, length)
rev_indices = shuffle_fn(indices, n_bits)
return tf.gather(inputs, rev_indices, axis=1)
示例4: uniform_binning_correction
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import log [as 别名]
def uniform_binning_correction(x, n_bits=8):
"""Replaces x^i with q^i(x) = U(x, x + 1.0 / 256.0).
Args:
x: 4-D Tensor of shape (NHWC)
n_bits: optional.
Returns:
x: x ~ U(x, x + 1.0 / 256)
objective: Equivalent to -q(x)*log(q(x)).
"""
n_bins = 2**n_bits
batch_size, height, width, n_channels = common_layers.shape_list(x)
hwc = float(height * width * n_channels)
x = x + tf.random_uniform(
shape=(batch_size, height, width, n_channels),
minval=0.0, maxval=1.0/n_bins)
objective = -np.log(n_bins) * hwc * tf.ones(batch_size)
return x, objective
示例5: residual_shuffle_network
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import log [as 别名]
def residual_shuffle_network(inputs, hparams):
"""Residual Shuffle-Exchange network with weight sharing.
Args:
inputs: inputs to the Shuffle-Exchange network. Should be in length of power
of 2.
hparams: Model configuration
Returns:
tf.Tensor: Outputs of the Shuffle-Exchange last layer
"""
input_shape = tf.shape(inputs)
n_bits = tf.log(tf.cast(input_shape[1] - 1, tf.float32)) / tf.log(2.0)
n_bits = tf.cast(n_bits, tf.int32) + 1
block_out = inputs
for k in range(hparams.num_hidden_layers):
with tf.variable_scope("benes_block_" + str(k), reuse=tf.AUTO_REUSE):
forward_output = forward_part(block_out, hparams, n_bits)
block_out = reverse_part(forward_output, hparams, n_bits)
return RSU("last_layer", hparams.dropout, hparams.mode)(block_out)
示例6: lossfn
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import log [as 别名]
def lossfn(real_input, fake_input, compress, hparams, lsgan, name):
"""Loss function."""
eps = 1e-12
with tf.variable_scope(name):
d1 = discriminator(real_input, compress, hparams, "discriminator")
d2 = discriminator(fake_input, compress, hparams, "discriminator",
reuse=True)
if lsgan:
dloss = tf.reduce_mean(
tf.squared_difference(d1, 0.9)) + tf.reduce_mean(tf.square(d2))
gloss = tf.reduce_mean(tf.squared_difference(d2, 0.9))
loss = (dloss + gloss)/2
else: # cross_entropy
dloss = -tf.reduce_mean(
tf.log(d1 + eps)) - tf.reduce_mean(tf.log1p(eps - d2))
gloss = -tf.reduce_mean(tf.log(d2 + eps))
loss = (dloss + gloss)/2
return loss
示例7: actnorm
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import log [as 别名]
def actnorm(name, x, x_mask, inverse, init, logscale_factor=3.0):
"""Activation normalization, returns logabsdet of shape [B]."""
eps = tf.keras.backend.epsilon()
n_channels = common_layers.shape_list(x)[2]
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
x_mean, x_var = gops.moments_over_bl(x, x_mask)
b = gops.get_variable_ddi(
"b", (n_channels), -x_mean, init, tf.zeros_initializer)
log_w_init = -0.5 * tf.log(x_var + eps) / logscale_factor
log_w = gops.get_variable_ddi(
"log_w", (n_channels), log_w_init, init,
tf.zeros_initializer) * logscale_factor
if not inverse:
x = (x + b) * tf.exp(log_w)
else:
x = x * tf.exp(-log_w) - b
x_length = tf.reduce_sum(x_mask, -1)
logabsdet = x_length * tf.reduce_sum(log_w)
if inverse:
logabsdet *= -1
return x, logabsdet
示例8: get_timing_signal
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import log [as 别名]
def get_timing_signal(length,
min_timescale=1,
max_timescale=1e4,
num_timescales=16):
"""Create Tensor of sinusoids of different frequencies.
Args:
length: Length of the Tensor to create, i.e. Number of steps.
min_timescale: a float
max_timescale: a float
num_timescales: an int
Returns:
Tensor of shape (length, 2*num_timescales)
"""
positions = to_float(tf.range(length))
log_timescale_increment = (
math.log(max_timescale / min_timescale) / (num_timescales - 1))
inv_timescales = min_timescale * tf.exp(
to_float(tf.range(num_timescales)) * -log_timescale_increment)
scaled_time = tf.expand_dims(positions, 1) * tf.expand_dims(inv_timescales, 0)
return tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
示例9: stfts_to_specgrams
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import log [as 别名]
def stfts_to_specgrams(self, stfts):
"""Converts stfts to specgrams.
Args:
stfts: Complex64 tensor of stft, shape [batch, time, freq, 1].
Returns:
specgrams: Tensor of log magnitudes and instantaneous frequencies,
shape [batch, time, freq, 2].
"""
stfts = stfts[:, :, :, 0]
logmag = self._safe_log(tf.abs(stfts))
phase_angle = tf.angle(stfts)
if self._ifreq:
p = spectral_ops.instantaneous_frequency(phase_angle)
else:
p = phase_angle / np.pi
return tf.concat(
[logmag[:, :, :, tf.newaxis], p[:, :, :, tf.newaxis]], axis=-1)
示例10: specgrams_to_stfts
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import log [as 别名]
def specgrams_to_stfts(self, specgrams):
"""Converts specgrams to stfts.
Args:
specgrams: Tensor of log magnitudes and instantaneous frequencies,
shape [batch, time, freq, 2].
Returns:
stfts: Complex64 tensor of stft, shape [batch, time, freq, 1].
"""
logmag = specgrams[:, :, :, 0]
p = specgrams[:, :, :, 1]
mag = tf.exp(logmag)
if self._ifreq:
phase_angle = tf.cumsum(p * np.pi, axis=-2)
else:
phase_angle = p * np.pi
return spectral_ops.polar2rect(mag, phase_angle)[:, :, :, tf.newaxis]
示例11: mu_law
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import log [as 别名]
def mu_law(x, mu=255, int8=False):
"""A TF implementation of Mu-Law encoding.
Args:
x: The audio samples to encode.
mu: The Mu to use in our Mu-Law.
int8: Use int8 encoding.
Returns:
out: The Mu-Law encoded int8 data.
"""
out = tf.sign(x) * tf.log(1 + mu * tf.abs(x)) / np.log(1 + mu)
out = tf.floor(out * 128)
if int8:
out = tf.cast(out, tf.int8)
return out
示例12: calculate_softmax_and_summaries
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import log [as 别名]
def calculate_softmax_and_summaries(logits, one_hot_labels, name):
"""Calculate the softmax cross entropy loss and associated summaries.
Args:
logits: Tensor of logits, first dimension is batch size.
one_hot_labels: Tensor of one hot encoded categorical labels. First
dimension is batch size.
name: Name to use as prefix for summaries.
Returns:
loss: Dimensionless tensor representing the mean negative
log-probability of the true class.
"""
loss = tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=one_hot_labels)
loss = tf.reduce_mean(loss)
softmax_summaries(loss, logits, one_hot_labels, name)
return loss
示例13: calculate_sparse_softmax_and_summaries
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import log [as 别名]
def calculate_sparse_softmax_and_summaries(logits, labels, name):
"""Calculate the softmax cross entropy loss and associated summaries.
Args:
logits: Tensor of logits, first dimension is batch size.
labels: Tensor of categorical labels [ints]. First
dimension is batch size.
name: Name to use as prefix for summaries.
Returns:
loss: Dimensionless tensor representing the mean negative
log-probability of the true class.
"""
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=labels)
loss = tf.reduce_mean(loss)
softmax_summaries(loss, logits, labels, name)
return loss
示例14: frequency_weighted_cost_mask
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import log [as 别名]
def frequency_weighted_cost_mask(peak=10.0, hz_flat=1000, sr=16000, n_fft=512):
"""Calculates a mask to weight lower frequencies higher.
Piecewise linear approximation. Assumes magnitude is in log scale.
Args:
peak: Cost increase at 0 Hz.
hz_flat: Hz at which cost increase is 0.
sr: Sample rate.
n_fft: FFT size.
Returns:
Constant tensor [1, N_freq, 1] of cost weighting.
"""
n = int(n_fft / 2)
cutoff = np.where(
librosa.core.fft_frequencies(sr=sr, n_fft=n_fft) >= hz_flat)[0][0]
mask = np.concatenate([np.linspace(peak, 1.0, cutoff), np.ones(n - cutoff)])
return tf.constant(mask[np.newaxis, :, np.newaxis], dtype=tf.float32)
#---------------------------------------------------
# Neural Nets
#---------------------------------------------------
示例15: _grow_alive
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import log [as 别名]
def _grow_alive(curr_seq, curr_scores, curr_log_probs, curr_finished,
batch_size, beam_size):
"""Given sequences and scores, will gather the top k=beam size sequences.
Args:
curr_seq: current topk sequence that has been grown by one position.
[batch_size, beam_size, decode_length + 1]
curr_scores: scores for each of these sequences. [batch_size, beam_size]
curr_log_probs: log probs for each of these sequences.
[batch_size, beam_size]
curr_finished: Finished flags for each of these sequences.
[batch_size, beam_size]
batch_size: Integer specifying batch size.
beam_size: Integer specifying beam size.
Returns:
Tuple of
(Topk sequences based on scores,
log probs of these sequences,
Finished flags of these sequences)
"""
# Set the scores of the finished seq in curr_seq to large negative
# values
curr_scores = _apply_negative_infinity_mask(curr_scores, curr_finished)
return compute_topk_scores_and_seq(curr_seq, curr_scores, curr_log_probs,
curr_finished, beam_size, batch_size)