本文整理汇总了Python中tensorflow.compat.v1.local_variables_initializer方法的典型用法代码示例。如果您正苦于以下问题:Python v1.local_variables_initializer方法的具体用法?Python v1.local_variables_initializer怎么用?Python v1.local_variables_initializer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.local_variables_initializer方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testSigmoidAccuracyOneHot
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import local_variables_initializer [as 别名]
def testSigmoidAccuracyOneHot(self):
logits = np.array([
[-1., 1.],
[1., -1.],
[-1., 1.],
[1., -1.]
])
labels = np.array([
[0, 1],
[1, 0],
[1, 0],
[0, 1]
])
logits = np.expand_dims(np.expand_dims(logits, 1), 1)
labels = np.expand_dims(np.expand_dims(labels, 1), 1)
with self.test_session() as session:
score, _ = metrics.sigmoid_accuracy_one_hot(logits, labels)
session.run(tf.global_variables_initializer())
session.run(tf.local_variables_initializer())
s = session.run(score)
self.assertEqual(s, 0.5)
示例2: testSigmoidPrecisionOneHot
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import local_variables_initializer [as 别名]
def testSigmoidPrecisionOneHot(self):
logits = np.array([
[-1., 1.],
[1., -1.],
[1., -1.],
[1., -1.]
])
labels = np.array([
[0, 1],
[0, 1],
[0, 1],
[0, 1]
])
logits = np.expand_dims(np.expand_dims(logits, 1), 1)
labels = np.expand_dims(np.expand_dims(labels, 1), 1)
with self.test_session() as session:
score, _ = metrics.sigmoid_precision_one_hot(logits, labels)
session.run(tf.global_variables_initializer())
session.run(tf.local_variables_initializer())
s = session.run(score)
self.assertEqual(s, 0.25)
示例3: testSigmoidRecallOneHot
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import local_variables_initializer [as 别名]
def testSigmoidRecallOneHot(self):
logits = np.array([
[-1., 1.],
[1., -1.],
[1., -1.],
[1., -1.]
])
labels = np.array([
[0, 1],
[0, 1],
[0, 1],
[0, 1]
])
logits = np.expand_dims(np.expand_dims(logits, 1), 1)
labels = np.expand_dims(np.expand_dims(labels, 1), 1)
with self.test_session() as session:
score, _ = metrics.sigmoid_recall_one_hot(logits, labels)
session.run(tf.global_variables_initializer())
session.run(tf.local_variables_initializer())
s = session.run(score)
self.assertEqual(s, 0.25)
示例4: testRocAuc
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import local_variables_initializer [as 别名]
def testRocAuc(self):
logits = np.array([
[-1., 1.],
[1., -1.],
[1., -1.],
[1., -1.]
])
labels = np.array([
[1],
[0],
[1],
[0]
])
logits = np.expand_dims(np.expand_dims(logits, 1), 1)
labels = np.expand_dims(np.expand_dims(labels, 1), 1)
with self.test_session() as session:
score, _ = metrics.roc_auc(logits, labels)
session.run(tf.global_variables_initializer())
session.run(tf.local_variables_initializer())
s = session.run(score)
self.assertAlmostEqual(s, 0.750, places=3)
示例5: testMultilabelMatch3
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import local_variables_initializer [as 别名]
def testMultilabelMatch3(self):
predictions = np.random.randint(1, 5, size=(100, 1, 1, 1))
targets = np.random.randint(1, 5, size=(100, 10, 1, 1))
weights = np.random.randint(0, 2, size=(100, 1, 1, 1))
targets *= weights
predictions_repeat = np.repeat(predictions, 10, axis=1)
expected = (predictions_repeat == targets).astype(float)
expected = np.sum(expected, axis=(1, 2, 3))
expected = np.minimum(expected / 3.0, 1.)
expected = np.sum(expected * weights[:, 0, 0, 0]) / weights.shape[0]
with self.test_session() as session:
scores, weights_ = metrics.multilabel_accuracy_match3(
tf.one_hot(predictions, depth=5, dtype=tf.float32),
tf.constant(targets, dtype=tf.int32))
a, a_op = tf.metrics.mean(scores, weights_)
session.run(tf.local_variables_initializer())
session.run(tf.global_variables_initializer())
_ = session.run(a_op)
actual = session.run(a)
self.assertAlmostEqual(actual, expected, places=6)
示例6: test_adam
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import local_variables_initializer [as 别名]
def test_adam(self):
with self.test_session() as sess:
w = tf.get_variable(
"w",
shape=[3],
initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
x = tf.constant([0.4, 0.2, -0.5])
loss = tf.reduce_mean(tf.square(x - w))
tvars = tf.trainable_variables()
grads = tf.gradients(loss, tvars)
global_step = tf.train.get_or_create_global_step()
optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
train_op = optimizer.apply_gradients(list(zip(grads, tvars)), global_step)
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
sess.run(init_op)
for _ in range(100):
sess.run(train_op)
w_np = sess.run(w)
self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2)
示例7: load_entities
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import local_variables_initializer [as 别名]
def load_entities(self, base_dir):
"""Load entity ids and masks."""
tf.reset_default_graph()
id_ckpt = os.path.join(base_dir, "entity_ids")
entity_ids = search_utils.load_database(
"entity_ids", None, id_ckpt, dtype=tf.int32)
mask_ckpt = os.path.join(base_dir, "entity_mask")
entity_mask = search_utils.load_database(
"entity_mask", None, mask_ckpt)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
tf.logging.info("Loading entity ids and masks...")
np_ent_ids, np_ent_mask = sess.run([entity_ids, entity_mask])
tf.logging.info("Building entity count matrix...")
entity_count_matrix = search_utils.build_count_matrix(np_ent_ids,
np_ent_mask)
tf.logging.info("Computing IDFs...")
self.idfs = search_utils.counts_to_idfs(entity_count_matrix, cutoff=1e-5)
tf.logging.info("Computing entity Tf-IDFs...")
ent_tfidfs = search_utils.counts_to_tfidf(entity_count_matrix, self.idfs)
self.ent_tfidfs = normalize(ent_tfidfs, norm="l2", axis=0)
示例8: initialize_session
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import local_variables_initializer [as 别名]
def initialize_session(self):
"""Initializes a tf.Session."""
if ENABLE_TF_OPTIMIZATIONS:
self.sess = tf.Session()
else:
session_config = tf.ConfigProto()
rewrite_options = session_config.graph_options.rewrite_options
rewrite_options.disable_model_pruning = True
rewrite_options.constant_folding = rewrite_options.OFF
rewrite_options.arithmetic_optimization = rewrite_options.OFF
rewrite_options.remapping = rewrite_options.OFF
rewrite_options.shape_optimization = rewrite_options.OFF
rewrite_options.dependency_optimization = rewrite_options.OFF
rewrite_options.function_optimization = rewrite_options.OFF
rewrite_options.layout_optimizer = rewrite_options.OFF
rewrite_options.loop_optimization = rewrite_options.OFF
rewrite_options.memory_optimization = rewrite_options.NO_MEM_OPT
self.sess = tf.Session(config=session_config)
# Restore or initialize the variables.
self.sess.run(tf.global_variables_initializer())
self.sess.run(tf.local_variables_initializer())
示例9: _build_eval_graph
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import local_variables_initializer [as 别名]
def _build_eval_graph(self, scope_name=None):
"""Build the evaluation graph.
Args:
scope_name: String to filter what summaries are collected. Only summary
ops whose name contains `scope_name` will be added, which is useful for
only including evaluation ops.
Returns:
A GraphInfo named_tuple containing various useful ops and tensors of the
evaluation grpah.
"""
with self._do_eval():
input_producer_op, enqueue_ops, fetches = self._build_model()
local_var_init_op = tf.local_variables_initializer()
table_init_ops = tf.tables_initializer()
variable_mgr_init_ops = [local_var_init_op]
if table_init_ops:
variable_mgr_init_ops.extend([table_init_ops])
with tf.control_dependencies([local_var_init_op]):
variable_mgr_init_ops.extend(self.variable_mgr.get_post_init_ops())
local_var_init_op_group = tf.group(*variable_mgr_init_ops)
summary_op = tf.summary.merge_all(scope=scope_name)
# The eval graph has no execution barrier because it doesn't run in
# distributed mode.
execution_barrier = None
# We do not use the global step during evaluation.
global_step = None
return GraphInfo(input_producer_op, enqueue_ops, fetches,
execution_barrier, global_step, local_var_init_op_group,
summary_op)
# TODO(reedwm): For consistency, we should have a similar
# "_initialize_train_graph" function. They can likely be the same function.
示例10: testTwoClassAccuracyMetric
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import local_variables_initializer [as 别名]
def testTwoClassAccuracyMetric(self):
predictions = tf.constant([0.0, 0.2, 0.4, 0.6, 0.8, 1.0], dtype=tf.float32)
targets = tf.constant([0, 0, 1, 0, 1, 1], dtype=tf.int32)
expected = 2.0 / 3.0
with self.test_session() as session:
accuracy, _ = metrics.two_class_accuracy(predictions, targets)
session.run(tf.global_variables_initializer())
session.run(tf.local_variables_initializer())
actual = session.run(accuracy)
self.assertAlmostEqual(actual, expected)
示例11: testSigmoidAccuracy
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import local_variables_initializer [as 别名]
def testSigmoidAccuracy(self):
logits = np.array([
[-1., 1.],
[1., -1.],
[-1., 1.],
[1., -1.]
])
labels = np.array([1, 0, 0, 1])
with self.test_session() as session:
score, _ = metrics.sigmoid_accuracy(logits, labels)
session.run(tf.global_variables_initializer())
session.run(tf.local_variables_initializer())
s = session.run(score)
self.assertEqual(s, 0.5)
示例12: testPearsonCorrelationCoefficient
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import local_variables_initializer [as 别名]
def testPearsonCorrelationCoefficient(self):
predictions = np.random.rand(12, 1)
targets = np.random.rand(12, 1)
expected = np.corrcoef(np.squeeze(predictions), np.squeeze(targets))[0][1]
with self.test_session() as session:
pearson, _ = metrics.pearson_correlation_coefficient(
tf.constant(predictions, dtype=tf.float32),
tf.constant(targets, dtype=tf.float32))
session.run(tf.global_variables_initializer())
session.run(tf.local_variables_initializer())
actual = session.run(pearson)
self.assertAlmostEqual(actual, expected)
示例13: compute_one_decoding_video_metrics
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import local_variables_initializer [as 别名]
def compute_one_decoding_video_metrics(iterator, feed_dict, num_videos):
"""Computes the average of all the metric for one decoding.
Args:
iterator: dataset iterator.
feed_dict: feed dict to initialize iterator.
num_videos: number of videos.
Returns:
all_psnr: 2-D Numpy array, shape=(num_samples, num_frames)
all_ssim: 2-D Numpy array, shape=(num_samples, num_frames)
"""
output, target = iterator.get_next()
metrics = psnr_and_ssim(output, target)
with tf.Session() as sess:
sess.run(tf.local_variables_initializer())
initalizer = iterator._initializer # pylint: disable=protected-access
if initalizer is not None:
sess.run(initalizer, feed_dict=feed_dict)
all_psnr, all_ssim = [], []
for i in range(num_videos):
print("Computing video: %d" % i)
psnr_np, ssim_np = sess.run(metrics)
all_psnr.append(psnr_np)
all_ssim.append(ssim_np)
all_psnr = np.array(all_psnr)
all_ssim = np.array(all_ssim)
return all_psnr, all_ssim
示例14: run_tester
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import local_variables_initializer [as 别名]
def run_tester(self, tester):
with self.test_session() as sess:
ops = tester.create_model()
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
sess.run(init_op)
output_result = sess.run(ops)
tester.check_output(output_result)
self.assert_all_tensors_reachable(sess, [init_op, ops])
示例15: compute_data_mean_and_std
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import local_variables_initializer [as 别名]
def compute_data_mean_and_std(data, axis, num_samples):
"""Computes data mean and std."""
with tf.Session() as sess:
sess.run([
tf.global_variables_initializer(),
tf.local_variables_initializer(),
tf.tables_initializer()
])
with tf_slim.queues.QueueRunners(sess):
data_value = np.concatenate(
[sess.run(data) for _ in range(num_samples)], axis=0)
mean = np.mean(data_value, axis=tuple(axis), keepdims=True)
std = np.std(data_value, axis=tuple(axis), keepdims=True)
return mean, std