本文整理汇总了Python中tensorflow.compat.v1.less方法的典型用法代码示例。如果您正苦于以下问题:Python v1.less方法的具体用法?Python v1.less怎么用?Python v1.less使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.less方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _build
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import less [as 别名]
def _build(self, x, state):
prev_keep_mask = state
shape = tf.shape(x)
noise = tf.random_uniform(shape, dtype=x.dtype)
other_mask = tf.floor(self._keep_prob + noise)
choice_noise = tf.random_uniform(shape, dtype=x.dtype)
choice = tf.less(choice_noise, self._flip_prob)
# KLUDGE(melisgl): The client has to pass the last keep_mask from
# a batch to the next so the mask may end up next to some
# recurrent cell state. This state is often zero at the beginning
# and may be periodically zeroed (per example) during training.
# While zeroing LSTM state is okay, zeroing the dropout mask is
# not. So instead of forcing every client to deal with this common
# (?) case, if an all zero mask is detected, then regenerate a
# fresh mask. This is of course a major hack and won't help with
# learnt initial states, for example.
sum_ = tf.reduce_sum(prev_keep_mask, 1, keepdims=True)
is_initializing = tf.equal(sum_, 0.0)
self._keep_mask = tf.where(tf.logical_or(choice, is_initializing),
other_mask,
prev_keep_mask)
self._time_step += 1
return x * self._keep_mask / self._keep_prob * self._scaler
示例2: mask_from_lengths
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import less [as 别名]
def mask_from_lengths(lengths, max_length=None, dtype=None, name=None):
"""Convert a length scalar to a vector of binary masks.
This function will convert a vector of lengths to a matrix of binary masks.
E.g. [2, 4, 3] will become [[1, 1, 0, 0], [1, 1, 1, 1], [1, 1, 1, 0]]
Args:
lengths: a d-dimensional vector of integers corresponding to lengths.
max_length: an optional (default: None) scalar-like or 0-dimensional tensor
indicating the maximum length of the masks. If not provided, the maximum
length will be inferred from the lengths vector.
dtype: the dtype of the returned mask, if specified. If None, the dtype of
the lengths will be used.
name: a name for the operation (optional).
Returns:
A d x max_length tensor of binary masks (int32).
"""
with tf.name_scope(name, 'mask_from_lengths'):
dtype = lengths.dtype if dtype is None else dtype
max_length = tf.reduce_max(lengths) if max_length is None else max_length
indexes = tf.range(max_length, dtype=lengths.dtype)
mask = tf.less(tf.expand_dims(indexes, 0), tf.expand_dims(lengths, 1))
cast_mask = tf.cast(mask, dtype)
return tf.stop_gradient(cast_mask)
示例3: _mix_tokens
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import less [as 别名]
def _mix_tokens(p_sample, gold_targets, sampled_targets):
"""Interleave sampled and gold tokens randomly.
Args:
p_sample: float in [0, 1]. Probability a token will come from
'sampled_targets'. 0 means all-gold, 1 means all-sampled.
gold_targets: Tensor. Gold token IDs.
sampled_targets: Tensor. Sampled token IDs. Same shape as 'gold_targets'.
Returns:
Tensor of same shape as 'gold_targets' containing a mix of tokens from
'gold_targets' and 'sampled_targets'.
"""
targets_shape = common_layers.shape_list(sampled_targets)
return tf.where(
tf.less(tf.random_uniform(targets_shape), p_sample),
sampled_targets, gold_targets)
示例4: neural_gpu_body
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import less [as 别名]
def neural_gpu_body(inputs, hparams, name=None):
"""The core Neural GPU."""
with tf.variable_scope(name, "neural_gpu"):
def step(state, inp): # pylint: disable=missing-docstring
x = tf.nn.dropout(state, 1.0 - hparams.dropout)
for layer in range(hparams.num_hidden_layers):
x = common_layers.conv_gru(
x, (hparams.kernel_height, hparams.kernel_width),
hparams.hidden_size,
name="cgru_%d" % layer)
# Padding input is zeroed-out in the modality, we check this by summing.
padding_inp = tf.less(tf.reduce_sum(tf.abs(inp), axis=[1, 2]), 0.00001)
new_state = tf.where(padding_inp, state, x) # No-op where inp is padding.
return new_state
return tf.foldl(
step,
tf.transpose(inputs, [1, 0, 2, 3]),
initializer=inputs,
parallel_iterations=1,
swap_memory=True)
示例5: transformer_tall_finetune_tied
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import less [as 别名]
def transformer_tall_finetune_tied():
"""Tied means fine-tune CNN/DM summarization as LM."""
hparams = transformer_tall()
hparams.multiproblem_max_input_length = 750
hparams.multiproblem_max_target_length = 100
hparams.multiproblem_schedule_max_examples = 0
hparams.learning_rate_schedule = ("linear_warmup*constant*cosdecay")
hparams.learning_rate_constant = 5e-5
hparams.learning_rate_warmup_steps = 100
# Set train steps to learning_rate_decay_steps or less
hparams.learning_rate_decay_steps = 80000
hparams.multiproblem_target_eval_only = True
hparams.multiproblem_reweight_label_loss = True
hparams.multiproblem_label_weight = 1.0
hparams.optimizer = "true_adam"
return hparams
示例6: transformer_tall_pretrain_lm
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import less [as 别名]
def transformer_tall_pretrain_lm():
"""Hparams for transformer on LM pretraining (with 64k vocab)."""
hparams = transformer_tall()
hparams.learning_rate_constant = 2e-4
hparams.learning_rate_schedule = ("linear_warmup*constant*cosdecay")
hparams.optimizer = "adam_w"
hparams.weight_decay = 0.01 * hparams.learning_rate_constant
hparams.optimizer_adam_beta1 = 0.9
hparams.optimizer_adam_beta2 = 0.999
hparams.optimizer_adam_epsilon = 1e-8
# Set max examples to something big when pretraining only the LM, definitely
# something an order of magnitude bigger than number of train steps.
hparams.multiproblem_schedule_max_examples = 5e8
# Set train steps to learning_rate_decay_steps or less
hparams.learning_rate_decay_steps = 5000000
return hparams
示例7: sample
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import less [as 别名]
def sample(self, features=None, shape=None):
del features
hp = self.hparams
div_x = 2**hp.num_hidden_layers
div_y = 1 if self.is1d else 2**hp.num_hidden_layers
size = [
hp.batch_size, hp.sample_height // div_x, hp.sample_width // div_y,
hp.bottleneck_bits
]
size = size if shape is None else shape
rand = tf.random_uniform(size)
res = 2.0 * tf.to_float(tf.less(0.5, rand)) - 1.0
# If you want to set some first bits to a fixed value, do this:
# fixed = tf.zeros_like(rand) - 1.0
# nbits = 3
# res = tf.concat([fixed[:, :, :, :nbits], res[:, :, :, nbits:]], axis=-1)
return res
示例8: bottleneck
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import less [as 别名]
def bottleneck(self, x): # pylint: disable=arguments-differ
hparams = self.hparams
if hparams.unordered:
return super(AutoencoderOrderedDiscrete, self).bottleneck(x)
noise = hparams.bottleneck_noise
hparams.bottleneck_noise = 0.0 # We'll add noise below.
x, loss = discretization.parametrized_bottleneck(x, hparams)
hparams.bottleneck_noise = noise
if hparams.mode == tf.estimator.ModeKeys.TRAIN:
# We want a number p such that p^bottleneck_bits = 1 - noise.
# So log(p) * bottleneck_bits = log(noise)
log_p = tf.log1p(-float(noise) / 2) / float(hparams.bottleneck_bits)
# Probabilities of flipping are p, p^2, p^3, ..., p^bottleneck_bits.
noise_mask = 1.0 - tf.exp(tf.cumsum(tf.zeros_like(x) + log_p, axis=-1))
# Having the no-noise mask, we can make noise just uniformly at random.
ordered_noise = tf.random_uniform(tf.shape(x))
# We want our noise to be 1s at the start and random {-1, 1} bits later.
ordered_noise = tf.to_float(tf.less(noise_mask, ordered_noise))
# Now we flip the bits of x on the noisy positions (ordered and normal).
x *= 2.0 * ordered_noise - 1
return x, loss
示例9: construct_latent_tower
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import less [as 别名]
def construct_latent_tower(self, images, time_axis):
"""Create the latent tower."""
# No latent in the first phase
first_phase = tf.less(
self.get_iteration_num(), self.hparams.num_iterations_1st_stage)
# use all frames by default but this allows more
# predicted frames at inference time
latent_num_frames = self.hparams.latent_num_frames
tf.logging.info("Creating latent tower with %d frames." % latent_num_frames)
if latent_num_frames > 0:
images = images[:, :latent_num_frames]
return common_video.conv_latent_tower(
images=images,
time_axis=time_axis,
latent_channels=self.hparams.latent_channels,
min_logvar=self.hparams.latent_std_min,
is_training=self.is_training,
random_latent=first_phase,
tiny_mode=self.hparams.tiny_mode,
small_mode=self.hparams.small_mode)
示例10: tanh_discrete_bottleneck
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import less [as 别名]
def tanh_discrete_bottleneck(x, bottleneck_bits, bottleneck_noise,
discretize_warmup_steps, mode):
"""Simple discretization through tanh, flip bottleneck_noise many bits."""
x = tf.layers.dense(x, bottleneck_bits, name="tanh_discrete_bottleneck")
d0 = tf.stop_gradient(2.0 * tf.to_float(tf.less(0.0, x))) - 1.0
if mode == tf.estimator.ModeKeys.TRAIN:
x += tf.truncated_normal(
common_layers.shape_list(x), mean=0.0, stddev=0.2)
x = tf.tanh(x)
d = x + tf.stop_gradient(2.0 * tf.to_float(tf.less(0.0, x)) - 1.0 - x)
if mode == tf.estimator.ModeKeys.TRAIN:
noise = tf.random_uniform(common_layers.shape_list(x))
noise = 2.0 * tf.to_float(tf.less(bottleneck_noise, noise)) - 1.0
d *= noise
d = common_layers.mix(d, x, discretize_warmup_steps,
mode == tf.estimator.ModeKeys.TRAIN)
return d, d0
示例11: unwrap
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import less [as 别名]
def unwrap(p, discont=np.pi, axis=-1):
"""Unwrap a cyclical phase tensor.
Args:
p: Phase tensor.
discont: Float, size of the cyclic discontinuity.
axis: Axis of which to unwrap.
Returns:
unwrapped: Unwrapped tensor of same size as input.
"""
dd = diff(p, axis=axis)
ddmod = tf.mod(dd + np.pi, 2.0 * np.pi) - np.pi
idx = tf.logical_and(tf.equal(ddmod, -np.pi), tf.greater(dd, 0))
ddmod = tf.where(idx, tf.ones_like(ddmod) * np.pi, ddmod)
ph_correct = ddmod - dd
idx = tf.less(tf.abs(dd), discont)
ddmod = tf.where(idx, tf.zeros_like(ddmod), dd)
ph_cumsum = tf.cumsum(ph_correct, axis=axis)
shape = p.get_shape().as_list()
shape[axis] = 1
ph_cumsum = tf.concat([tf.zeros(shape, dtype=p.dtype), ph_cumsum], axis=axis)
unwrapped = p + ph_cumsum
return unwrapped
示例12: intensity_shift
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import less [as 别名]
def intensity_shift(
image, label, per_class_intensity_scale, per_class_intensity_shift):
"""Perturb intensity in lesion and non-lesion regions."""
if per_class_intensity_scale < 0.000001 and (
per_class_intensity_shift < 0.000001):
return image
# Randomly change (mostly increase) intensity of non-lesion region.
per_class_noise = _truncated_normal(
per_class_intensity_shift, per_class_intensity_scale)
image = image + per_class_noise * (
image * tf.cast(tf.greater(label, 1.5), tf.float32))
# Randomly change (mostly decrease) intensity of lesion region.
per_class_noise = _truncated_normal(
-per_class_intensity_shift, per_class_intensity_scale)
image = image + per_class_noise * (
image * tf.cast(tf.less(label, 1.5), tf.float32))
return image
示例13: compute_thresholded_labels
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import less [as 别名]
def compute_thresholded_labels(labels, null_threshold=4):
"""Computes thresholded labels.
Args:
labels: <int32> [batch_size, num_annotators]
null_threshold: If number of null annotations is greater than or equal to
this threshold, all annotations are set to null for this example.
Returns:
thresholded_labels: <int32> [batch_size, num_annotators]
"""
null_labels = tf.equal(labels, 0)
# <int32> [batch_size]
null_count = tf.reduce_sum(tf.to_int32(null_labels), 1)
threshold_mask = tf.less(null_count, null_threshold)
# <bool> [batch_size, num_annotators]
threshold_mask = tf.tile(
tf.expand_dims(threshold_mask, -1), [1, tf.shape(labels)[1]])
# <bool> [batch_size, num_annotators]
thresholded_labels = tf.where(
threshold_mask, x=labels, y=tf.zeros_like(labels))
return thresholded_labels
示例14: get_lr
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import less [as 别名]
def get_lr(global_step, base_lr, # pylint: disable=missing-docstring
decay_steps, lr_decay_factor, warmup_steps):
warmup_lr = 0.0
if warmup_steps > 0:
warmup_lr = (tf.cast(global_step, tf.float32) * (base_lr / warmup_steps))
if decay_steps:
normal_lr = tf.train.piecewise_constant(
global_step,
[s for s in decay_steps],
[base_lr * (lr_decay_factor ** i) for i in range(len(decay_steps) + 1)]
)
else:
normal_lr = base_lr
lr = tf.cond(
tf.less(global_step, tf.cast(warmup_steps, dtype=tf.dtypes.int64)),
lambda: warmup_lr, lambda: normal_lr)
return lr
# TODO(akolesnikov): add more logging
示例15: compute_valid_mask
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import less [as 别名]
def compute_valid_mask(num_valid_elements, num_elements):
"""Computes mask of valid entries within padded context feature.
Args:
num_valid_elements: A int32 Tensor of shape [batch_size].
num_elements: An int32 Tensor.
Returns:
A boolean Tensor of the shape [batch_size, num_elements]. True means
valid and False means invalid.
"""
batch_size = num_valid_elements.shape[0]
element_idxs = tf.range(num_elements, dtype=tf.int32)
batch_element_idxs = tf.tile(element_idxs[tf.newaxis, ...], [batch_size, 1])
num_valid_elements = num_valid_elements[..., tf.newaxis]
valid_mask = tf.less(batch_element_idxs, num_valid_elements)
return valid_mask