本文整理汇总了Python中tensorflow.compat.v1.group方法的典型用法代码示例。如果您正苦于以下问题:Python v1.group方法的具体用法?Python v1.group怎么用?Python v1.group使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.group方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _make_update
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import group [as 别名]
def _make_update(self):
mss = []
gsum = 0.0
count = 0
for sum_squared_grads in self._sum_squared_grads:
ms = tf.sqrt(sum_squared_grads / self._num_squared_grads)
gsum += tf.reduce_sum(ms)
count += tf.reduce_sum(tf.ones_like(ms))
mss.append(ms)
gsum = gsum / count
assignments = []
for grad, var, save, sum_squared_grads, ms in zip(
self._grads, self._vars, self._saves, self._sum_squared_grads, mss):
decay_rate = tf.minimum(1.0, self._decay_rate*(ms/gsum))
delta = (-self._learning_rate*grad / (ms + self._epsilon) +
decay_rate*(save-var))
assignments.append(var.assign_add(delta))
return tf.group(assignments)
示例2: _apply_sparse_shared
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import group [as 别名]
def _apply_sparse_shared(self, grad, var, indices, scatter_add):
beta1_power, beta2_power = self._get_beta_accumulators()
beta1_power = tf.cast(beta1_power, var.dtype.base_dtype)
beta2_power = tf.cast(beta2_power, var.dtype.base_dtype)
lr_t = tf.cast(self._lr_t, var.dtype.base_dtype)
beta1_t = tf.cast(self._beta1_t, var.dtype.base_dtype)
beta2_t = tf.cast(self._beta2_t, var.dtype.base_dtype)
epsilon_t = tf.cast(self._epsilon_t, var.dtype.base_dtype)
lr = (lr_t * tf.sqrt(1 - beta2_power) / (1 - beta1_power))
# m_t = beta1 * m + (1 - beta1) * g_t
m = self.get_slot(var, "m")
m_scaled_g_values = grad * (1 - beta1_t)
m_t = tf.assign(m, m * beta1_t, use_locking=self._use_locking)
with tf.control_dependencies([m_t]):
m_t = scatter_add(m, indices, m_scaled_g_values)
# v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
v = self.get_slot(var, "v")
v_scaled_g_values = (grad * grad) * (1 - beta2_t)
v_t = tf.assign(v, v * beta2_t, use_locking=self._use_locking)
with tf.control_dependencies([v_t]):
v_t = scatter_add(v, indices, v_scaled_g_values)
v_sqrt = tf.sqrt(v_t)
var_update = tf.assign_sub(
var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking)
return tf.group(*[var_update, m_t, v_t])
示例3: _apply_cond
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import group [as 别名]
def _apply_cond(self, apply_fn, grad, var, *args, **kwargs):
"""Apply conditionally if counter is zero."""
grad_acc = self.get_slot(var, "grad_acc")
def apply_adam(grad_acc, apply_fn, grad, var, *args, **kwargs):
total_grad = (grad_acc + grad) / tf.cast(self._n_t, grad.dtype)
adam_op = apply_fn(total_grad, var, *args, **kwargs)
with tf.control_dependencies([adam_op]):
grad_acc_to_zero_op = grad_acc.assign(tf.zeros_like(grad_acc),
use_locking=self._use_locking)
return tf.group(adam_op, grad_acc_to_zero_op)
def accumulate_gradient(grad_acc, grad):
assign_op = tf.assign_add(grad_acc, grad, use_locking=self._use_locking)
return tf.group(assign_op) # Strip return value
return tf.cond(
tf.equal(self._get_iter_variable(), 0),
lambda: apply_adam(grad_acc, apply_fn, grad, var, *args, **kwargs),
lambda: accumulate_gradient(grad_acc, grad))
示例4: _finish
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import group [as 别名]
def _finish(self, update_ops, name_scope):
"""Updates beta_power variables every n batches and incrs counter."""
iter_ = self._get_iter_variable()
beta1_power, beta2_power = self._get_beta_accumulators()
with tf.control_dependencies(update_ops):
with tf.colocate_with(iter_):
def update_beta_op():
update_beta1 = beta1_power.assign(
beta1_power * self._beta1_t,
use_locking=self._use_locking)
update_beta2 = beta2_power.assign(
beta2_power * self._beta2_t,
use_locking=self._use_locking)
return tf.group(update_beta1, update_beta2)
maybe_update_beta = tf.cond(
tf.equal(iter_, 0), update_beta_op, tf.no_op)
with tf.control_dependencies([maybe_update_beta]):
update_iter = iter_.assign(tf.mod(iter_ + 1, self._n_t),
use_locking=self._use_locking)
return tf.group(
*update_ops + [update_iter, maybe_update_beta], name=name_scope)
示例5: test_adam
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import group [as 别名]
def test_adam(self):
with self.test_session() as sess:
w = tf.get_variable(
"w",
shape=[3],
initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
x = tf.constant([0.4, 0.2, -0.5])
loss = tf.reduce_mean(tf.square(x - w))
tvars = tf.trainable_variables()
grads = tf.gradients(loss, tvars)
global_step = tf.train.get_or_create_global_step()
optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
train_op = optimizer.apply_gradients(list(zip(grads, tvars)), global_step)
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
sess.run(init_op)
for _ in range(100):
sess.run(train_op)
w_np = sess.run(w)
self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2)
示例6: assign_to_slices
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import group [as 别名]
def assign_to_slices(self, assign_fn, values, assign_to_tensor_list=None):
"""Assign to the slice variables.
Args:
assign_fn: a function from
(mtf.Variable, tf.Variable, tf.Tensor) -> tf.Operation
values: a list of tf.Tensor
assign_to_tensor_list: an optional list of tf.Variable
Returns:
a tf.operation
"""
if assign_to_tensor_list is None:
assign_to_tensor_list = self._laid_out_tensor.all_slices
# Handle both N -> 1 and N -> N cases.
num_slices = min(len(assign_to_tensor_list), len(values))
devices = [""] * num_slices
return tf.group(
mtf.parallel(devices, assign_fn,
[self._variable] * len(devices),
assign_to_tensor_list[:num_slices],
values[:num_slices]))
示例7: get_step_from_checkpoint_path
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import group [as 别名]
def get_step_from_checkpoint_path(checkpoint_path):
"""Returns the global step for the checkpoint at `checkpoint_path`.
Assumes `checkpoint_path` corresponds to a file which contains the substring
model.ckpt-{global_step}
Args:
checkpoint_path: str of path to a checkpoint file.
Returns:
int of the global step corresponding to the checkpoint file.
Raises:
ValueError if checkpoint_path does not correspond to a model checkpoint file
which contains the global_step in its filename.
"""
match = re.match(r".*model\.ckpt\-(\d+).*", checkpoint_path)
if match is None:
raise ValueError("Invalid checkpoint path {}".format(checkpoint_path))
return int(match.group(1))
# TODO(noam): include more descriptive definitions
示例8: f1_metric
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import group [as 别名]
def f1_metric(precision, precision_op, recall, recall_op):
"""Computes F1 based on precision and recall.
Args:
precision: <float> [batch_size]
precision_op: Update op for precision.
recall: <float> [batch_size]
recall_op: Update op for recall.
Returns:
tensor and update op for F1.
"""
f1_op = tf.group(precision_op, recall_op)
numerator = 2 * tf.multiply(precision, recall)
denominator = tf.add(precision, recall)
f1 = tf.divide(numerator, denominator)
# <float> [batch_size]
zero_vec = tf.zeros_like(f1)
is_valid = tf.greater(denominator, zero_vec)
f1 = tf.where(is_valid, x=f1, y=zero_vec)
return f1, f1_op
示例9: _build_select_slate_op
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import group [as 别名]
def _build_select_slate_op(self):
p_no_click = self._prob_no_click_ph
p = self._doc_affinity_scores_ph
q = self._net_outputs.q_values[0]
with tf.name_scope('select_slate'):
self._output_slate = self._select_slate_fn(self._slate_size, p_no_click,
p, q)
self._output_slate = tf.Print(
self._output_slate, [tf.constant('cp 1'), self._output_slate, p, q],
summarize=10000)
self._output_slate = tf.reshape(self._output_slate, (self._slate_size,))
self._action_counts = tf.get_variable(
'action_counts',
shape=[self._num_candidates],
initializer=tf.zeros_initializer())
output_slate = tf.reshape(self._output_slate, [-1])
output_one_hot = tf.one_hot(output_slate, self._num_candidates)
update_ops = []
for i in range(self._slate_size):
update_ops.append(tf.assign_add(self._action_counts, output_one_hot[i]))
self._select_action_update_op = tf.group(*update_ops)
示例10: get_loss_scale_update_op
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import group [as 别名]
def get_loss_scale_update_op(loss_scale, loss_scale_normal_steps,
inc_loss_scale_every_n):
"""Returns the update op for loss scaling variables.
We maintain the counter `loss_scale_normal_steps` to count the number of steps
we have been using the current `loss_scale`. In most cases, this function
increments `loss_scale_normal_steps`. However, if `loss_scale_normal_steps` is
greater than the threshold `inc_loss_scale_every_n`, we double `loss_scale`
and reset `loss_scale_normal_steps` to zero.
This op is only called if the gradients don't have any infs or nans. Instead,
if infs or nans occur in the gradients, we immeditately halve `loss_scale` and
reset `loss_scale_normal_steps` to zero.
Args:
loss_scale: a tf.Variable represneting the loss_scale value.
loss_scale_normal_steps: a tf.Variable representing the number of training
steps that have run since the loss_scale last changed.
inc_loss_scale_every_n: a Python integer threshold. `loss_scale` is
increased every `inc_loss_scale_every_n` steps, unless the gradients have
infs or nans.
Returns:
An op for updating `loss_scale` and `loss_scale_normal_steps`.
"""
def increment_loss_scale_normal_steps_func():
return tf.group(loss_scale_normal_steps.assign_add(1))
def increase_loss_scale_func():
return tf.group(
tf.assign(loss_scale_normal_steps, 0),
tf.assign(loss_scale, loss_scale * 2))
# true_fn and false_fn must have the same type.
return tf.cond(loss_scale_normal_steps < inc_loss_scale_every_n,
increment_loss_scale_normal_steps_func,
increase_loss_scale_func)
示例11: print_info
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import group [as 别名]
def print_info(self):
"""Print basic information."""
benchmark_info = self._get_params_info()
log_fn('Model: %s' % self.model.get_model_name())
log_fn('Dataset: %s' % benchmark_info['dataset_name'])
log_fn('Mode: %s' % self.mode)
log_fn('SingleSess: %s' % benchmark_info['single_session'])
log_fn('Batch size: %s global' % (self.batch_size * self.num_workers))
log_fn(' %s per device' % (self.batch_size //
len(self.raw_devices)))
if self.batch_group_size > 1:
log_fn(' %d batches per prepocessing group' %
self.batch_group_size)
log_fn('Num batches: %d' % self.num_batches)
log_fn('Num epochs: %.2f' % self.num_epochs)
log_fn('Devices: %s' % benchmark_info['device_list'])
log_fn('NUMA bind: %s' % self.params.use_numa_affinity)
log_fn('Data format: %s' % self.params.data_format)
if self.rewriter_config:
log_fn('RewriterConfig: %s' % self.rewriter_config)
log_fn('Optimizer: %s' % self.params.optimizer)
log_fn('Variables: %s' % self.params.variable_update)
if (self.params.variable_update == 'replicated' or
self.params.variable_update == 'distributed_all_reduce'
or self.params.variable_update == 'collective_all_reduce'):
log_fn('AllReduce: %s' % self.params.all_reduce_spec)
if self.job_name:
log_fn('Sync: %s' % self.params.cross_replica_sync)
if self.params.staged_vars:
log_fn('Staged vars: %s' % self.params.staged_vars)
if self.params.variable_update == 'horovod' and self.params.horovod_device:
log_fn('Horovod on: %s' % self.params.horovod_device)
log_fn('==========')
示例12: _build_eval_graph
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import group [as 别名]
def _build_eval_graph(self, scope_name=None):
"""Build the evaluation graph.
Args:
scope_name: String to filter what summaries are collected. Only summary
ops whose name contains `scope_name` will be added, which is useful for
only including evaluation ops.
Returns:
A GraphInfo named_tuple containing various useful ops and tensors of the
evaluation grpah.
"""
with self._do_eval():
input_producer_op, enqueue_ops, fetches = self._build_model()
local_var_init_op = tf.local_variables_initializer()
table_init_ops = tf.tables_initializer()
variable_mgr_init_ops = [local_var_init_op]
if table_init_ops:
variable_mgr_init_ops.extend([table_init_ops])
with tf.control_dependencies([local_var_init_op]):
variable_mgr_init_ops.extend(self.variable_mgr.get_post_init_ops())
local_var_init_op_group = tf.group(*variable_mgr_init_ops)
summary_op = tf.summary.merge_all(scope=scope_name)
# The eval graph has no execution barrier because it doesn't run in
# distributed mode.
execution_barrier = None
# We do not use the global step during evaluation.
global_step = None
return GraphInfo(input_producer_op, enqueue_ops, fetches,
execution_barrier, global_step, local_var_init_op_group,
summary_op)
# TODO(reedwm): For consistency, we should have a similar
# "_initialize_train_graph" function. They can likely be the same function.
示例13: add_sync_queues_and_barrier
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import group [as 别名]
def add_sync_queues_and_barrier(self, name_prefix, enqueue_after_list):
"""Adds ops to enqueue on all worker queues.
Args:
name_prefix: prefixed for the shared_name of ops.
enqueue_after_list: control dependency from ops.
Returns:
An op that should be used as control dependency before starting next step.
"""
self.sync_queue_counter += 1
with tf.device(self.sync_queue_devices[(
self.sync_queue_counter % len(self.sync_queue_devices))]):
sync_queues = [
tf.FIFOQueue(self.num_workers, [tf.bool], shapes=[[]],
shared_name='%s%s' % (name_prefix, i))
for i in range(self.num_workers)]
queue_ops = []
# For each other worker, add an entry in a queue, signaling that it can
# finish this step.
token = tf.constant(False)
with tf.control_dependencies(enqueue_after_list):
for i, q in enumerate(sync_queues):
if i == self.task_index:
queue_ops.append(tf.no_op())
else:
queue_ops.append(q.enqueue(token))
# Drain tokens off queue for this worker, one for each other worker.
queue_ops.append(
sync_queues[self.task_index].dequeue_many(len(sync_queues) - 1))
return tf.group(*queue_ops)
示例14: _make_save
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import group [as 别名]
def _make_save(self):
assignments = []
for save, var in zip(self._saves, self._vars):
assignments.append(save.assign(var))
return tf.group(assignments)
示例15: _make_restore
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import group [as 别名]
def _make_restore(self):
assignments = []
for save, var in zip(self._saves, self._vars):
assignments.append(var.assign(save))
return tf.group(assignments)