本文整理汇总了Python中tensorflow.compat.v1.global_variables方法的典型用法代码示例。如果您正苦于以下问题:Python v1.global_variables方法的具体用法?Python v1.global_variables怎么用?Python v1.global_variables使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.global_variables方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_post_init_ops
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import global_variables [as 别名]
def get_post_init_ops(self):
# Copy initialized variables for variables on the parameter server
# to the local copy of the variable.
local_vars = tf.local_variables()
local_var_by_name = dict(
[(self._strip_port(v.name), v) for v in local_vars])
post_init_ops = []
for v in tf.global_variables():
if v.name.startswith(variable_mgr_util.PS_SHADOW_VAR_PREFIX + '/v0/'):
prefix = self._strip_port(
v.name[len(variable_mgr_util.PS_SHADOW_VAR_PREFIX + '/v0'):])
for i in range(self.benchmark_cnn.num_gpus):
name = 'v%s%s' % (i, prefix)
if name in local_var_by_name:
copy_to = local_var_by_name[name]
post_init_ops.append(copy_to.assign(v.read_value()))
return post_init_ops
示例2: savable_variables
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import global_variables [as 别名]
def savable_variables(self):
"""Returns a list/dict of savable variables to pass to tf.train.Saver."""
params = {}
for v in tf.global_variables():
assert (v.name.startswith(variable_mgr_util.PS_SHADOW_VAR_PREFIX + '/v0/')
or v.name in ('global_step:0', 'loss_scale:0',
'loss_scale_normal_steps:0')), (
'Invalid global variable: %s' % v)
# We store variables in the checkpoint with the shadow variable prefix
# removed so we can evaluate checkpoints in non-distributed replicated
# mode. The checkpoints can also be loaded for training in
# distributed_replicated mode.
name = self._strip_port(self._remove_shadow_var_prefix_if_present(v.name))
params[name] = v
for v in tf.local_variables():
# Non-trainable variables, such as batch norm moving averages, do not have
# corresponding global shadow variables, so we add them here. Trainable
# local variables have corresponding global shadow variables, which were
# added in the global variable loop above.
if v.name.startswith('v0/') and v not in tf.trainable_variables():
params[self._strip_port(v.name)] = v
return params
示例3: evaluate
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import global_variables [as 别名]
def evaluate(self, env_fn, hparams, sampling_temp):
with tf.Graph().as_default():
with tf.name_scope("rl_eval"):
eval_env = env_fn(in_graph=True)
(collect_memory, _, collect_init) = _define_collect(
eval_env,
hparams,
"ppo_eval",
eval_phase=True,
frame_stack_size=self.frame_stack_size,
force_beginning_resets=False,
sampling_temp=sampling_temp,
distributional_size=self._distributional_size,
)
model_saver = tf.train.Saver(
tf.global_variables(hparams.policy_network + "/.*")
# tf.global_variables("clean_scope.*") # Needed for sharing params.
)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
collect_init(sess)
trainer_lib.restore_checkpoint(self.agent_model_dir, model_saver,
sess)
sess.run(collect_memory)
示例4: __init__
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import global_variables [as 别名]
def __init__(self, hparams, action_space, observation_space, policy_dir):
assert hparams.base_algo == "ppo"
ppo_hparams = trainer_lib.create_hparams(hparams.base_algo_params)
frame_stack_shape = (1, hparams.frame_stack_size) + observation_space.shape
self._frame_stack = np.zeros(frame_stack_shape, dtype=np.uint8)
with tf.Graph().as_default():
self.obs_t = tf.placeholder(shape=self.frame_stack_shape, dtype=np.uint8)
self.logits_t, self.value_function_t = get_policy(
self.obs_t, ppo_hparams, action_space
)
model_saver = tf.train.Saver(
tf.global_variables(scope=ppo_hparams.policy_network + "/.*") # pylint: disable=unexpected-keyword-arg
)
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
trainer_lib.restore_checkpoint(policy_dir, model_saver,
self.sess)
示例5: __init__
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import global_variables [as 别名]
def __init__(
self, batch_size, observation_space, action_space, policy_hparams,
policy_dir, sampling_temp
):
super(PolicyAgent, self).__init__(
batch_size, observation_space, action_space
)
self._sampling_temp = sampling_temp
with tf.Graph().as_default():
self._observations_t = tf.placeholder(
shape=((batch_size,) + self.observation_space.shape),
dtype=self.observation_space.dtype
)
(logits, self._values_t) = rl.get_policy(
self._observations_t, policy_hparams, self.action_space
)
actions = common_layers.sample_with_temperature(logits, sampling_temp)
self._probs_t = tf.nn.softmax(logits / sampling_temp)
self._actions_t = tf.cast(actions, tf.int32)
model_saver = tf.train.Saver(
tf.global_variables(policy_hparams.policy_network + "/.*") # pylint: disable=unexpected-keyword-arg
)
self._sess = tf.Session()
self._sess.run(tf.global_variables_initializer())
trainer_lib.restore_checkpoint(policy_dir, model_saver, self._sess)
示例6: testVarNames
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import global_variables [as 别名]
def testVarNames(self):
with tf.Graph().as_default():
model, features = get_model(
mode=tf.estimator.ModeKeys.PREDICT,
model_cls=transformer.TransformerScorer)
_ = model.infer(features)
scorer_vars = [v.name for v in tf.global_variables()]
with tf.Graph().as_default():
model, features = get_model(
mode=tf.estimator.ModeKeys.EVAL,
model_cls=transformer.TransformerScorer)
_ = model(features)
scorer_eval_vars = [v.name for v in tf.global_variables()]
with tf.Graph().as_default():
model, features = get_model(
mode=tf.estimator.ModeKeys.EVAL,
model_cls=transformer.Transformer)
_ = model(features)
transformer_vars = [v.name for v in tf.global_variables()]
self.assertEqual(sorted(scorer_vars), sorted(transformer_vars))
self.assertEqual(sorted(scorer_eval_vars), sorted(transformer_vars))
示例7: underlying_variable
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import global_variables [as 别名]
def underlying_variable(t):
"""Find the underlying tf.Variable object.
Args:
t: a Tensor
Returns:
tf.Variable.
"""
t = underlying_variable_ref(t)
assert t is not None
# make sure that the graph has a variable index and that it is up-to-date
if not hasattr(tf.get_default_graph(), "var_index"):
tf.get_default_graph().var_index = {}
var_index = tf.get_default_graph().var_index
for v in tf.global_variables()[len(var_index):]:
var_index[v.name] = v
return var_index[t.name]
示例8: build_model
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import global_variables [as 别名]
def build_model(self):
# Our test model is:
#
# -> conv1 --+ -> conv3 -->
# / | /
# image [concat]
# \ | \
# -> conv2 --+ -> conv4 -->
#
# (the model has two "outputs", conv3 and conv4).
#
image = tf.constant(0.0, shape=[1, 17, 19, NUM_CHANNELS])
conv1 = slim.layers.conv2d(image, 13, [7, 5], padding='SAME', scope='conv1')
conv2 = slim.layers.conv2d(image, 23, [1, 1], padding='SAME', scope='conv2')
concat = tf.concat([conv1, conv2], 3)
self.conv3 = slim.layers.conv2d(
concat, 29, [3, 3], stride=2, padding='SAME', scope='conv3')
self.conv4 = slim.layers.conv2d(
concat, 31, [1, 1], stride=1, padding='SAME', scope='conv4')
self.name_to_var = {v.op.name: v for v in tf.global_variables()}
self.regularizer = latency_regularizer.GammaLatencyRegularizer(
[self.conv3.op, self.conv4.op],
gamma_threshold=0.45, hardware=HARDWARE)
示例9: BuildModel
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import global_variables [as 别名]
def BuildModel(self):
# Our test model is:
#
# -> conv1 --+ -> conv3 -->
# / | /
# image [concat]
# \ | \
# -> conv2 --+ -> conv4 -->
#
# (the model has two "outputs", conv3 and conv4).
#
# op.name: 'Const'
image = tf.constant(0.0, shape=[1, 17, 19, NUM_CHANNELS])
# op.name: 'conv1/Conv2D'
self.conv1 = slim.layers.conv2d(
image, 13, [7, 5], padding='SAME', scope='conv1')
self.conv2 = slim.layers.conv2d(
image, 23, [1, 1], padding='SAME', scope='conv2')
self.concat = tf.concat([self.conv1, self.conv2], 3)
self.conv3 = slim.layers.conv2d(
self.concat, 29, [3, 3], stride=2, padding='SAME', scope='conv3')
self.conv4 = slim.layers.conv2d(
self.concat, 31, [1, 1], stride=1, padding='SAME', scope='conv4')
self.name_to_var = {v.op.name: v for v in tf.global_variables()}
示例10: testLossCostDecorated
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import global_variables [as 别名]
def testLossCostDecorated(self):
params = {'trainable': True, 'normalizer_fn': slim.batch_norm,
'normalizer_params': {'scale': True}}
with slim.arg_scope([slim.layers.conv2d], **params):
image = tf.constant(0.0, shape=[1, 1, 1, NUM_CHANNELS])
conv1 = slim.layers.conv2d(
image, 2, [1, 1], padding='SAME', scope='conv1')
with self.cached_session():
tf.global_variables_initializer().run()
name_to_var = {v.op.name: v for v in tf.global_variables()}
gamma1 = name_to_var['conv1/BatchNorm/gamma']
gamma1.assign([1] * 2).eval()
self.gamma_flop_reg = model_size_regularizer.GammaModelSizeRegularizer(
[conv1.op],
gamma_threshold=0.1,
regularizer_decorator=dummy_decorator.DummyDecorator,
decorator_parameters={'scale': 0.5})
conv = self.get_conv('conv1')
self.assertEqual(_coeff(conv) * 3 * 1, self.loss([conv]))
self.assertEqual(_coeff(conv) * 2 * NUM_CHANNELS, self.cost([conv]))
示例11: run
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import global_variables [as 别名]
def run(config):
"""Entry point to run training."""
init_data_normalizer(config)
stage_ids = train_util.get_stage_ids(**config)
if not config['train_progressive']:
stage_ids = list(stage_ids)[-1:]
# Train one stage at a time
for stage_id in stage_ids:
batch_size = train_util.get_batch_size(stage_id, **config)
tf.reset_default_graph()
with tf.device(tf.train.replica_device_setter(config['ps_tasks'])):
model = lib_model.Model(stage_id, batch_size, config)
model.add_summaries()
print('Variables:')
for v in tf.global_variables():
print('\t', v.name, v.get_shape().as_list())
logging.info('Calling train.train')
train_util.train(model, **config)
示例12: _testScope
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import global_variables [as 别名]
def _testScope(self, factory, prefix="prefix", use_outer_scope=True):
# REMARKS: factory(scope) is a function accepting a scope
# as an argument, such scope can be None, a string
# or a VariableScope instance.
with self.session(use_gpu=True, graph=tf.Graph()):
if use_outer_scope:
with tf.variable_scope(prefix) as scope:
factory(scope)
else:
factory(prefix)
# check that all the variables names starts with the proper scope.
tf.global_variables_initializer()
all_vars = tf.global_variables()
prefix = prefix or "stack_bidirectional_rnn"
scope_vars = [v for v in all_vars if v.name.startswith(prefix + "/")]
tf.logging.info("StackRNN with scope: %s (%s)" %
(prefix, "scope" if use_outer_scope else "str"))
for v in scope_vars:
tf.logging.info(v.name)
self.assertEqual(len(scope_vars), len(all_vars))
示例13: recoverer
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import global_variables [as 别名]
def recoverer(sess, model_path, meta_graph_path=None):
"""
Recovery parameters from a pretrained model.
Args:
sess: The tensorflow session instance.
model_path: Checkpoint file path.
Returns:
Nothing
"""
if meta_graph_path is None:
restore_var = tf.global_variables()
restorer = tf.train.Saver(restore_var)
else:
restorer = tf.train.import_meta_graph(meta_graph_path)
restorer.restore(sess, model_path)
# from https://stackoverflow.com/questions/35911252/disable-tensorflow-debugging-information
# 0 = all messages are logged (default behavior)
# 1 = INFO messages are not printed
# 2 = INFO and WARNING messages are not printed
# 3 = INFO, WARNING, and ERROR messages are not printed
示例14: restore_model
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import global_variables [as 别名]
def restore_model(sess, checkpoint_path, enable_ema=True):
"""Restore variables from the checkpoint into the provided session.
Args:
sess: A tensorflow session where the checkpoint will be loaded.
checkpoint_path: Path to the trained checkpoint.
enable_ema: (optional) Whether to load the exponential moving average (ema)
version of the tensorflow variables. Defaults to True.
"""
if enable_ema:
ema = tf.train.ExponentialMovingAverage(decay=0.0)
ema_vars = tf.trainable_variables() + tf.get_collection("moving_vars")
for v in tf.global_variables():
if "moving_mean" in v.name or "moving_variance" in v.name:
ema_vars.append(v)
ema_vars = list(set(ema_vars))
var_dict = ema.variables_to_restore(ema_vars)
else:
var_dict = None
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(var_dict, max_to_keep=1)
saver.restore(sess, checkpoint_path)
示例15: get_global_variables_safely
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import global_variables [as 别名]
def get_global_variables_safely():
"""If not executing eagerly, returns tf.global_variables().
Raises a ValueError if eager execution is enabled,
because the variables are not tracked when executing eagerly.
If executing eagerly, use a Keras model's .variables property instead.
Returns:
The result of tf.global_variables()
"""
with tf.init_scope():
if tf.executing_eagerly():
raise ValueError("Global variables collection is not tracked when "
"executing eagerly. Use a Keras model's `.variables` "
"attribute instead.")
return tf.global_variables()