本文整理汇总了Python中tensorflow.compat.v1.get_collection方法的典型用法代码示例。如果您正苦于以下问题:Python v1.get_collection方法的具体用法?Python v1.get_collection怎么用?Python v1.get_collection使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.get_collection方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testVariablesSetDeviceMobileModel
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import get_collection [as 别名]
def testVariablesSetDeviceMobileModel(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
# Force all Variables to reside on the device.
with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
nasnet.build_nasnet_mobile(inputs, num_classes)
with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
nasnet.build_nasnet_mobile(inputs, num_classes)
for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
self.assertDeviceEqual(v.device, '/cpu:0')
for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
self.assertDeviceEqual(v.device, '/gpu:0')
示例2: _load_checkpoint
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import get_collection [as 别名]
def _load_checkpoint(checkpoint_filename, extra_vars, trainable_only=False):
if tf.gfile.IsDirectory(checkpoint_filename):
checkpoint_filename = tf.train.latest_checkpoint(checkpoint_filename)
logging.info('Loading checkpoint %s', checkpoint_filename)
saveables = (tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) +
tf.get_collection(tf.GraphKeys.SAVEABLE_OBJECTS))
if trainable_only:
saveables = list(set(saveables) & set(tf.trainable_variables()))
# Try to restore all saveables, if that fails try without extra_vars.
try:
saver = tf.train.Saver(var_list=saveables)
saver.restore(tf.get_default_session(), checkpoint_filename)
except (ValueError, tf.errors.NotFoundError):
logging.info('Missing key in checkpoint. Trying old checkpoint format.')
saver = tf.train.Saver(var_list=list(set(saveables) - set(extra_vars)))
saver.restore(tf.get_default_session(), checkpoint_filename)
示例3: estimator_spec_eval
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import get_collection [as 别名]
def estimator_spec_eval(self, features, logits, labels, loss, losses_dict):
"""Constructs `tf.estimator.EstimatorSpec` for EVAL (evaluation) mode."""
estimator_spec = super(TransformerAE, self).estimator_spec_eval(
features, logits, labels, loss, losses_dict)
if common_layers.is_xla_compiled():
# For TPUs (and XLA more broadly?), do not add summary hooks that depend
# on losses; they are not supported.
return estimator_spec
summary_op = tf.get_collection(tf.GraphKeys.SUMMARIES, scope="losses")
summary_op.extend(tf.get_collection(tf.GraphKeys.SUMMARIES, scope="loss"))
summary_op.append(tf.summary.scalar("loss", loss))
summary_saver_hook = tf.train.SummarySaverHook(
save_steps=100,
summary_op=summary_op,
output_dir=os.path.join(self.hparams.model_dir, "eval"))
hooks = list(estimator_spec.evaluation_hooks)
hooks.append(summary_saver_hook)
return estimator_spec._replace(evaluation_hooks=hooks)
示例4: define_train_ops
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import get_collection [as 别名]
def define_train_ops(gan_model, gan_loss, **kwargs):
"""Defines progressive GAN train ops.
Args:
gan_model: A `GANModel` namedtuple.
gan_loss: A `GANLoss` namedtuple.
**kwargs: A dictionary of
'adam_beta1': A float of Adam optimizer beta1.
'adam_beta2': A float of Adam optimizer beta2.
'generator_learning_rate': A float of generator learning rate.
'discriminator_learning_rate': A float of discriminator learning rate.
Returns:
A tuple of `GANTrainOps` namedtuple and a list variables tracking the state
of optimizers.
"""
with tf.variable_scope('progressive_gan_train_ops') as var_scope:
beta1, beta2 = kwargs['adam_beta1'], kwargs['adam_beta2']
gen_opt = tf.train.AdamOptimizer(kwargs['generator_learning_rate'], beta1,
beta2)
dis_opt = tf.train.AdamOptimizer(kwargs['discriminator_learning_rate'],
beta1, beta2)
gan_train_ops = tfgan.gan_train_ops(gan_model, gan_loss, gen_opt, dis_opt)
return gan_train_ops, tf.get_collection(
tf.GraphKeys.GLOBAL_VARIABLES, scope=var_scope.name)
示例5: testBatchNormUpdateImproveStatistics
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import get_collection [as 别名]
def testBatchNormUpdateImproveStatistics(self):
"""Test that updating the moving_mean improves statistics."""
_, _, inputs = _get_inputs()
# Use small decay_rate to update faster.
bn = ibp.BatchNorm(offset=False, scale=False, decay_rate=0.1,
update_ops_collection=tf.GraphKeys.UPDATE_OPS)
out1 = bn(inputs, is_training=False)
# Build the update ops.
bn(inputs, is_training=True)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
out_v = sess.run(out1)
# Before updating the moving_mean the results are off.
self.assertBetween(np.max(np.abs(np.zeros([7, 6]) - out_v)), 2, 5)
sess.run(tuple(tf.get_collection(tf.GraphKeys.UPDATE_OPS)))
# After updating the moving_mean the results are better.
out_v = sess.run(out1)
self.assertBetween(np.max(np.abs(np.zeros([7, 6]) - out_v)), 1, 2)
示例6: initialize
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import get_collection [as 别名]
def initialize(self):
"""Initialize the teacher model from the checkpoint.
This function will be called after the graph has been constructed.
"""
if self.fraction_soft == 0.0:
# Do nothing if we do not need the teacher.
return
vars_to_restore = tf.get_collection(
tf.GraphKeys.GLOBAL_VARIABLES, scope="teacher")
tf.train.init_from_checkpoint(
self.teacher_checkpoint,
{v.name[len("teacher/"):].split(":")[0]: v for v in vars_to_restore})
# gin-configurable constructors
示例7: restore_model
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import get_collection [as 别名]
def restore_model(sess, checkpoint_path, enable_ema=True):
"""Restore variables from the checkpoint into the provided session.
Args:
sess: A tensorflow session where the checkpoint will be loaded.
checkpoint_path: Path to the trained checkpoint.
enable_ema: (optional) Whether to load the exponential moving average (ema)
version of the tensorflow variables. Defaults to True.
"""
if enable_ema:
ema = tf.train.ExponentialMovingAverage(decay=0.0)
ema_vars = tf.trainable_variables() + tf.get_collection("moving_vars")
for v in tf.global_variables():
if "moving_mean" in v.name or "moving_variance" in v.name:
ema_vars.append(v)
ema_vars = list(set(ema_vars))
var_dict = ema.variables_to_restore(ema_vars)
else:
var_dict = None
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(var_dict, max_to_keep=1)
saver.restore(sess, checkpoint_path)
示例8: testVariablesSetDevice
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import get_collection [as 别名]
def testVariablesSetDevice(self):
batch_size = 5
height, width = 299, 299
num_classes = 1000
with self.test_session():
inputs = tf.random.uniform((batch_size, height, width, 3))
# Force all Variables to reside on the device.
with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
inception.inception_resnet_v2(inputs, num_classes)
with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
inception.inception_resnet_v2(inputs, num_classes)
for v in tf.get_collection(
tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
self.assertDeviceEqual(v.device, '/cpu:0')
for v in tf.get_collection(
tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
self.assertDeviceEqual(v.device, '/gpu:0')
示例9: testVariablesSetDeviceMobileModel
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import get_collection [as 别名]
def testVariablesSetDeviceMobileModel(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
inputs = tf.random.uniform((batch_size, height, width, 3))
tf.train.create_global_step()
# Force all Variables to reside on the device.
with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
nasnet.build_nasnet_mobile(inputs, num_classes)
with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
nasnet.build_nasnet_mobile(inputs, num_classes)
for v in tf.get_collection(
tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
self.assertDeviceEqual(v.device, '/cpu:0')
for v in tf.get_collection(
tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
self.assertDeviceEqual(v.device, '/gpu:0')
示例10: testVariablesSetDevice
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import get_collection [as 别名]
def testVariablesSetDevice(self):
batch_size = 5
height, width = 299, 299
num_classes = 1000
inputs = tf.random.uniform((batch_size, height, width, 3))
# Force all Variables to reside on the device.
with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
inception.inception_v4(inputs, num_classes)
with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
inception.inception_v4(inputs, num_classes)
for v in tf.get_collection(
tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
self.assertDeviceEqual(v.device, '/cpu:0')
for v in tf.get_collection(
tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
self.assertDeviceEqual(v.device, '/gpu:0')
示例11: testCreateLogisticClassifier
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import get_collection [as 别名]
def testCreateLogisticClassifier(self):
g = tf.Graph()
with g.as_default():
tf.set_random_seed(0)
tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
tf_labels = tf.constant(self._labels, dtype=tf.float32)
model_fn = LogisticClassifier
clone_args = (tf_inputs, tf_labels)
deploy_config = model_deploy.DeploymentConfig(num_clones=1)
self.assertEqual(slim.get_variables(), [])
clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
clone = clones[0]
self.assertEqual(len(slim.get_variables()), 2)
for v in slim.get_variables():
self.assertDeviceEqual(v.device, 'CPU:0')
self.assertDeviceEqual(v.value().device, 'CPU:0')
self.assertEqual(clone.outputs.op.name,
'LogisticClassifier/fully_connected/Sigmoid')
self.assertEqual(clone.scope, '')
self.assertDeviceEqual(clone.device, 'GPU:0')
self.assertEqual(len(slim.losses.get_losses()), 1)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
self.assertEqual(update_ops, [])
示例12: testCreateSingleclone
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import get_collection [as 别名]
def testCreateSingleclone(self):
g = tf.Graph()
with g.as_default():
tf.set_random_seed(0)
tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
tf_labels = tf.constant(self._labels, dtype=tf.float32)
model_fn = BatchNormClassifier
clone_args = (tf_inputs, tf_labels)
deploy_config = model_deploy.DeploymentConfig(num_clones=1)
self.assertEqual(slim.get_variables(), [])
clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
self.assertEqual(len(slim.get_variables()), 5)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
self.assertEqual(len(update_ops), 2)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0)
total_loss, grads_and_vars = model_deploy.optimize_clones(clones,
optimizer)
self.assertEqual(len(grads_and_vars), len(tf.trainable_variables()))
self.assertEqual(total_loss.op.name, 'total_loss')
for g, v in grads_and_vars:
self.assertDeviceEqual(g.device, 'GPU:0')
self.assertDeviceEqual(v.device, 'CPU:0')
示例13: _get_variables_to_train
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import get_collection [as 别名]
def _get_variables_to_train():
"""Returns a list of variables to train.
Returns:
A list of variables to train by the optimizer.
"""
if FLAGS.trainable_scopes is None:
return tf.trainable_variables()
else:
scopes = [scope.strip() for scope in FLAGS.trainable_scopes.split(',')]
variables_to_train = []
for scope in scopes:
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
variables_to_train.extend(variables)
return variables_to_train
示例14: test_expected_calibration_error_all_bins_filled
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import get_collection [as 别名]
def test_expected_calibration_error_all_bins_filled(self):
"""Test expected calibration error when all bins contain predictions."""
y_true, y_pred = self._get_calibration_placeholders()
expected_ece_op, update_op = calibration_metrics.expected_calibration_error(
y_true, y_pred, nbins=2)
with self.test_session() as sess:
metrics_vars = tf.get_collection(tf.GraphKeys.METRIC_VARIABLES)
sess.run(tf.variables_initializer(var_list=metrics_vars))
# Bin calibration errors (|confidence - accuracy| * bin_weight):
# - [0,0.5): |0.2 - 0.333| * (3/5) = 0.08
# - [0.5, 1]: |0.75 - 0.5| * (2/5) = 0.1
sess.run(
update_op,
feed_dict={
y_pred: np.array([0., 0.2, 0.4, 0.5, 1.0]),
y_true: np.array([0, 0, 1, 0, 1])
})
actual_ece = 0.08 + 0.1
expected_ece = sess.run(expected_ece_op)
self.assertAlmostEqual(actual_ece, expected_ece)
示例15: test_expected_calibration_error_all_bins_not_filled
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import get_collection [as 别名]
def test_expected_calibration_error_all_bins_not_filled(self):
"""Test expected calibration error when no predictions for one bin."""
y_true, y_pred = self._get_calibration_placeholders()
expected_ece_op, update_op = calibration_metrics.expected_calibration_error(
y_true, y_pred, nbins=2)
with self.test_session() as sess:
metrics_vars = tf.get_collection(tf.GraphKeys.METRIC_VARIABLES)
sess.run(tf.variables_initializer(var_list=metrics_vars))
# Bin calibration errors (|confidence - accuracy| * bin_weight):
# - [0,0.5): |0.2 - 0.333| * (3/5) = 0.08
# - [0.5, 1]: |0.75 - 0.5| * (2/5) = 0.1
sess.run(
update_op,
feed_dict={
y_pred: np.array([0., 0.2, 0.4]),
y_true: np.array([0, 0, 1])
})
actual_ece = np.abs(0.2 - (1 / 3.))
expected_ece = sess.run(expected_ece_op)
self.assertAlmostEqual(actual_ece, expected_ece)