本文整理汇总了Python中tensorflow.compat.v1.floor方法的典型用法代码示例。如果您正苦于以下问题:Python v1.floor方法的具体用法?Python v1.floor怎么用?Python v1.floor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.floor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _build
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import floor [as 别名]
def _build(self, x, state):
prev_keep_mask = state
shape = tf.shape(x)
noise = tf.random_uniform(shape, dtype=x.dtype)
other_mask = tf.floor(self._keep_prob + noise)
choice_noise = tf.random_uniform(shape, dtype=x.dtype)
choice = tf.less(choice_noise, self._flip_prob)
# KLUDGE(melisgl): The client has to pass the last keep_mask from
# a batch to the next so the mask may end up next to some
# recurrent cell state. This state is often zero at the beginning
# and may be periodically zeroed (per example) during training.
# While zeroing LSTM state is okay, zeroing the dropout mask is
# not. So instead of forcing every client to deal with this common
# (?) case, if an all zero mask is detected, then regenerate a
# fresh mask. This is of course a major hack and won't help with
# learnt initial states, for example.
sum_ = tf.reduce_sum(prev_keep_mask, 1, keepdims=True)
is_initializing = tf.equal(sum_, 0.0)
self._keep_mask = tf.where(tf.logical_or(choice, is_initializing),
other_mask,
prev_keep_mask)
self._time_step += 1
return x * self._keep_mask / self._keep_prob * self._scaler
示例2: _quantize
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import floor [as 别名]
def _quantize(x, params, randomize=True):
"""Quantize x according to params, optionally randomizing the rounding."""
if not params.quantize:
return x
if not randomize:
return tf.bitcast(
tf.cast(x / params.quantization_scale, tf.int16), tf.float16)
abs_x = tf.abs(x)
sign_x = tf.sign(x)
y = abs_x / params.quantization_scale
y = tf.floor(y + tf.random_uniform(common_layers.shape_list(x)))
y = tf.minimum(y, tf.int16.max) * sign_x
q = tf.bitcast(tf.cast(y, tf.int16), tf.float16)
return q
示例3: preprocess
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import floor [as 别名]
def preprocess(self, x):
"""Normalize x.
Args:
x: 4-D Tensor.
Returns:
x: Scaled such that x lies in-between -0.5 and 0.5
"""
n_bits_x = self.hparams.n_bits_x
n_bins = 2**n_bits_x
x = tf.cast(x, dtype=tf.float32)
if n_bits_x < 8:
x = tf.floor(x / 2 ** (8 - n_bits_x))
x = x / n_bins - 0.5
return x
示例4: mu_law
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import floor [as 别名]
def mu_law(x, mu=255, int8=False):
"""A TF implementation of Mu-Law encoding.
Args:
x: The audio samples to encode.
mu: The Mu to use in our Mu-Law.
int8: Use int8 encoding.
Returns:
out: The Mu-Law encoded int8 data.
"""
out = tf.sign(x) * tf.log(1 + mu * tf.abs(x)) / np.log(1 + mu)
out = tf.floor(out * 128)
if int8:
out = tf.cast(out, tf.int8)
return out
示例5: drop_connect
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import floor [as 别名]
def drop_connect(inputs, is_training, survival_prob):
"""Drop the entire conv with given survival probability."""
# "Deep Networks with Stochastic Depth", https://arxiv.org/pdf/1603.09382.pdf
if not is_training:
return inputs
# Compute tensor.
batch_size = tf.shape(inputs)[0]
random_tensor = survival_prob
random_tensor += tf.random_uniform([batch_size, 1, 1, 1], dtype=inputs.dtype)
binary_tensor = tf.floor(random_tensor)
# Unlike conventional way that multiply survival_prob at test time, here we
# divide survival_prob at training time, such that no addition compute is
# needed at test time.
output = tf.div(inputs, survival_prob) * binary_tensor
return output
示例6: _apply_func_with_prob
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import floor [as 别名]
def _apply_func_with_prob(func, image, args, prob, bboxes):
"""Apply `func` to image w/ `args` as input with probability `prob`."""
assert isinstance(args, tuple)
if six.PY2:
# pylint: disable=deprecated-method
arg_spec = inspect.getargspec(func)
# pylint: enable=deprecated-method
else:
arg_spec = inspect.getfullargspec(func)
assert 'bboxes' == arg_spec[0][1]
# If prob is a function argument, then this randomness is being handled
# inside the function, so make sure it is always called.
if 'prob' in arg_spec[0]:
prob = 1.0
# Apply the function with probability `prob`.
should_apply_op = tf.cast(
tf.floor(tf.random_uniform([], dtype=tf.float32) + prob), tf.bool)
augmented_image, augmented_bboxes = tf.cond(
should_apply_op,
lambda: func(image, bboxes, *args),
lambda: (image, bboxes))
return augmented_image, augmented_bboxes
示例7: drop_path
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import floor [as 别名]
def drop_path(net, keep_prob, is_training=True):
"""Drops out a whole example hiddenstate with the specified probability."""
if is_training:
batch_size = tf.shape(net)[0]
noise_shape = [batch_size, 1, 1, 1]
keep_prob = tf.cast(keep_prob, dtype=net.dtype)
random_tensor = keep_prob
random_tensor += tf.random_uniform(noise_shape, dtype=net.dtype)
binary_tensor = tf.floor(random_tensor)
net = tf.div(net, keep_prob) * binary_tensor
return net
示例8: _ensure_keep_mask
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import floor [as 别名]
def _ensure_keep_mask(self, x):
if self._keep_mask is None or not self._share_mask:
shape = tf.shape(x)
noise = tf.random_uniform(shape, dtype=x.dtype)
self._keep_mask = (tf.floor(self._keep_prob + noise)
* (self._scaler / self._keep_prob))
self._keep_mask.set_shape(x.get_shape())
return self._keep_mask
示例9: __call__
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import floor [as 别名]
def __call__(self, inputs, residual_inputs):
"""Apply SwitchLayer to inputs.
Args:
inputs: Input tensor
residual_inputs: Residual connections from previous block
Returns:
tf.Tensor: New candidate value
"""
input_shape = tf.shape(inputs)
self.batch_size = input_shape[0]
self.length = input_shape[1]
self.num_units = inputs.shape.as_list()[2]
self.n_bits = tf.log(tf.cast(self.length - 1, tf.float32)) / tf.log(2.0)
self.n_bits = tf.floor(self.n_bits) + 1
initializer = tf.constant_initializer(0.5)
residual_scale = tf.get_variable(
self.prefix + "/residual_scale", [self.num_units],
initializer=initializer)
shuffled_input = self.swap_halves(inputs)
mem_all = inputs + residual_inputs * residual_scale
# calculate the new value
candidate = self.gated_linear_map(mem_all, "c", 0.5, self.num_units,
self.num_units)
gate = tf.nn.sigmoid(
self.linear_map(mem_all, "g", 0.5, self.num_units, self.num_units))
candidate = gate * shuffled_input + (1 - gate) * candidate
if self.dropout > 0:
candidate = tf.nn.dropout(candidate, rate=self.dropout / self.n_bits)
if self.dropout != 0.0 and self.mode == tf.estimator.ModeKeys.TRAIN:
noise = tf.random_normal(tf.shape(candidate), mean=1.0, stddev=0.001)
candidate = candidate * noise
return candidate
示例10: feature_grid_coordinate_vectors
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import floor [as 别名]
def feature_grid_coordinate_vectors(box_grid_y, box_grid_x):
"""Returns feature grid point coordinate vectors for bilinear interpolation.
Box grid is specified in absolute coordinate system with origin at left top
(0, 0). The returned coordinate vectors contain 0-based feature point indices.
This function snaps each point in the box grid to nearest 4 points on the
feature map.
In this function we also follow the convention of treating feature pixels as
point objects with no spatial extent.
Args:
box_grid_y: A float tensor of shape [batch, num_boxes, size] containing y
coordinate vector of the box grid.
box_grid_x: A float tensor of shape [batch, num_boxes, size] containing x
coordinate vector of the box grid.
Returns:
feature_grid_y0: An int32 tensor of shape [batch, num_boxes, size]
containing y coordinate vector for the top neighbors.
feature_grid_x0: A int32 tensor of shape [batch, num_boxes, size]
containing x coordinate vector for the left neighbors.
feature_grid_y1: A int32 tensor of shape [batch, num_boxes, size]
containing y coordinate vector for the bottom neighbors.
feature_grid_x1: A int32 tensor of shape [batch, num_boxes, size]
containing x coordinate vector for the right neighbors.
"""
feature_grid_y0 = tf.floor(box_grid_y)
feature_grid_x0 = tf.floor(box_grid_x)
feature_grid_y1 = tf.floor(box_grid_y + 1)
feature_grid_x1 = tf.floor(box_grid_x + 1)
feature_grid_y0 = tf.cast(feature_grid_y0, dtype=tf.int32)
feature_grid_y1 = tf.cast(feature_grid_y1, dtype=tf.int32)
feature_grid_x0 = tf.cast(feature_grid_x0, dtype=tf.int32)
feature_grid_x1 = tf.cast(feature_grid_x1, dtype=tf.int32)
return (feature_grid_y0, feature_grid_x0, feature_grid_y1, feature_grid_x1)
示例11: _randomly_negate_tensor
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import floor [as 别名]
def _randomly_negate_tensor(tensor):
"""With 50% prob turn the tensor negative."""
should_flip = tf.cast(tf.floor(tf.random_uniform([]) + 0.5), tf.bool)
final_tensor = tf.cond(should_flip, lambda: tensor, lambda: -tensor)
return final_tensor
示例12: test_forward_floor
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import floor [as 别名]
def test_forward_floor():
ishape = (1, 3, 10, 10)
inp_array = np.random.uniform(size=ishape).astype(np.float32)
with tf.Graph().as_default():
in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
tf.floor(in1)
compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Floor:0')
示例13: learning_rate_factor
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import floor [as 别名]
def learning_rate_factor(name, step_num, hparams):
"""Compute the designated learning rate factor from hparams."""
if name == "constant":
tf.logging.info("Base learning rate: %f", hparams.learning_rate_constant)
return hparams.learning_rate_constant
elif name == "linear_warmup":
return tf.minimum(1.0, step_num / hparams.learning_rate_warmup_steps)
elif name == "linear_decay":
ret = (hparams.train_steps - step_num) / hparams.learning_rate_decay_steps
return tf.minimum(1.0, tf.maximum(0.0, ret))
elif name == "cosdecay": # openai gpt
in_warmup = tf.cast(step_num <= hparams.learning_rate_warmup_steps,
dtype=tf.float32)
ret = 0.5 * (1 + tf.cos(
np.pi * step_num / hparams.learning_rate_decay_steps))
# if in warmup stage return 1 else return the decayed value
return in_warmup * 1 + (1 - in_warmup) * ret
elif name == "single_cycle_cos_decay":
# Cosine decay to zero with a single cycle. This is different from
# "cosdecay" because it starts at 1 when the warmup steps end.
x = tf.maximum(step_num, hparams.learning_rate_warmup_steps)
step = x - hparams.learning_rate_warmup_steps
if hparams.train_steps <= hparams.learning_rate_warmup_steps:
raise ValueError("single_cycle_cos_decay cannot be used unless "
"hparams.train_steps > "
"hparams.learning_rate_warmup_steps")
return tf.math.cos(
step * np.pi /
(hparams.train_steps - hparams.learning_rate_warmup_steps)) / 2.0 + 0.5
elif name == "multi_cycle_cos_decay":
# Cosine decay with a variable number of cycles. This is different from
# "cosdecay" because it starts at 1 when the warmup steps end. Use
# hparams.learning_rate_decay_steps to determine the number of cycles.
x = tf.maximum(step_num, hparams.learning_rate_warmup_steps)
step = x - hparams.learning_rate_warmup_steps
return tf.math.cos(
step * np.pi / hparams.learning_rate_decay_steps) / 2.0 + 0.5
elif name == "rsqrt_decay":
return tf.rsqrt(tf.maximum(step_num, hparams.learning_rate_warmup_steps))
elif name == "rsqrt_normalized_decay":
scale = tf.sqrt(tf.to_float(hparams.learning_rate_warmup_steps))
return scale * tf.rsqrt(tf.maximum(
step_num, hparams.learning_rate_warmup_steps))
elif name == "exp_decay":
decay_steps = hparams.learning_rate_decay_steps
warmup_steps = hparams.learning_rate_warmup_steps
p = (step_num - warmup_steps) / decay_steps
p = tf.maximum(p, 0.)
if hparams.learning_rate_decay_staircase:
p = tf.floor(p)
return tf.pow(hparams.learning_rate_decay_rate, p)
elif name == "rsqrt_hidden_size":
return hparams.hidden_size ** -0.5
elif name == "legacy":
return legacy_learning_rate_schedule(hparams)
else:
raise ValueError("unknown learning rate factor %s" % name)
示例14: _learning_rate_decay
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import floor [as 别名]
def _learning_rate_decay(hparams, warmup_steps=0):
"""Learning rate decay multiplier."""
scheme = hparams.learning_rate_decay_scheme
warmup_steps = tf.to_float(warmup_steps)
global_step = _global_step(hparams)
if not scheme or scheme == "none":
return tf.constant(1.)
tf.logging.info("Applying learning rate decay: %s.", scheme)
if scheme == "exp":
decay_steps = hparams.learning_rate_decay_steps
p = (global_step - warmup_steps) / decay_steps
if hparams.learning_rate_decay_staircase:
p = tf.floor(p)
return tf.pow(hparams.learning_rate_decay_rate, p)
if scheme == "piecewise":
return _piecewise_learning_rate(global_step,
hparams.learning_rate_boundaries,
hparams.learning_rate_multiples)
if scheme == "cosine":
cycle_steps = hparams.learning_rate_cosine_cycle_steps
cycle_position = global_step % (2 * cycle_steps)
cycle_position = cycle_steps - tf.abs(cycle_steps - cycle_position)
return 0.5 * (1 + tf.cos(np.pi * cycle_position / cycle_steps))
if scheme == "cyclelinear10x":
# Cycle the rate linearly by 10x every warmup_steps, up and down.
cycle_steps = warmup_steps
cycle_position = global_step % (2 * cycle_steps)
cycle_position = tf.to_float( # Normalize to the interval [-1, 1].
cycle_position - cycle_steps) / float(cycle_steps)
cycle_position = 1.0 - tf.abs(cycle_position) # 0 to 1 and back to 0.
return (cycle_position + 0.1) * 3.0 # 10x difference each cycle (0.3-3).
if scheme == "sqrt":
return _legacy_sqrt_decay(global_step - warmup_steps)
raise ValueError("Unrecognized learning rate decay scheme: %s" %
hparams.learning_rate_decay_scheme)
示例15: simulated_quantize
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import floor [as 别名]
def simulated_quantize(x, num_bits, noise):
"""Simulate quantization to num_bits bits, with externally-stored scale.
num_bits is the number of bits used to store each value.
noise is a float32 Tensor containing values in [0, 1).
Each value in noise should take different values across
different steps, approximating a uniform distribution over [0, 1).
In the case of replicated TPU training, noise should be identical
across replicas in order to keep the parameters identical across replicas.
The natural choice for noise would be tf.random_uniform(),
but this is not possible for TPU, since there is currently no way to seed
the different cores to produce identical values across replicas. Instead we
use noise_from_step_num() (see below).
The quantization scheme is as follows:
Compute the maximum absolute value by row (call this max_abs).
Store this either in an auxiliary variable or in an extra column.
Divide the parameters by (max_abs / (2^(num_bits-1)-1)). This gives a
float32 value in the range [-2^(num_bits-1)-1, 2^(num_bits-1)-1]
Unbiased randomized roundoff by adding noise and rounding down.
This produces a signed integer with num_bits bits which can then be stored.
Args:
x: a float32 Tensor
num_bits: an integer between 1 and 22
noise: a float Tensor broadcastable to the shape of x.
Returns:
a float32 Tensor
"""
shape = x.get_shape().as_list()
if not (len(shape) >= 2 and shape[-1] > 1):
return x
max_abs = tf.reduce_max(tf.abs(x), -1, keepdims=True) + 1e-9
max_int = 2 ** (num_bits - 1) - 1
scale = max_abs / max_int
x /= scale
x = tf.floor(x + noise)
# dequantize before storing (since this is a simulation)
x *= scale
return x