本文整理汇总了Python中tensorflow.compat.v1.einsum方法的典型用法代码示例。如果您正苦于以下问题:Python v1.einsum方法的具体用法?Python v1.einsum怎么用?Python v1.einsum使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.einsum方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: two_class_log_likelihood
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import einsum [as 别名]
def two_class_log_likelihood(predictions, labels, weights_fn=None):
"""Log-likelihood for two class classification with 0/1 labels.
Args:
predictions: A float valued tensor of shape [`batch_size`]. Each
component should be between 0 and 1.
labels: An int valued tensor of shape [`batch_size`]. Each component
should either be 0 or 1.
weights_fn: unused.
Returns:
A pair, with the average log likelihood in the first component.
"""
del weights_fn
float_predictions = tf.cast(tf.squeeze(predictions), dtype=tf.float64)
batch_probs = tf.stack([1. - float_predictions, float_predictions], axis=-1)
int_labels = tf.cast(tf.squeeze(labels), dtype=tf.int32)
onehot_targets = tf.cast(tf.one_hot(int_labels, 2), dtype=tf.float64)
chosen_probs = tf.einsum(
"ij,ij->i", batch_probs, onehot_targets, name="chosen_probs")
avg_log_likelihood = tf.reduce_mean(tf.log(chosen_probs))
return avg_log_likelihood, tf.constant(1.0)
示例2: test_einsum_via_matmul
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import einsum [as 别名]
def test_einsum_via_matmul(self):
batch_size = 8
seq_length = 12
num_attention_heads = 3
head_size = 6
hidden_size = 10
input_tensor = np.random.uniform(0, 1,
[batch_size, seq_length, hidden_size])
input_tensor = tf.constant(input_tensor, dtype=tf.float32)
w = np.random.uniform(0, 1, [hidden_size, num_attention_heads, head_size])
w = tf.constant(w, dtype=tf.float32)
ret1 = tf.einsum("BFH,HND->BFND", input_tensor, w)
ret2 = modeling.einsum_via_matmul(input_tensor, w, 1)
self.assertAllClose(ret1, ret2)
input_tensor = np.random.uniform(0, 1,
[batch_size, seq_length,
num_attention_heads, head_size])
input_tensor = tf.constant(input_tensor, dtype=tf.float32)
w = np.random.uniform(0, 1, [num_attention_heads, head_size, hidden_size])
w = tf.constant(w, dtype=tf.float32)
ret1 = tf.einsum("BFND,NDH->BFH", input_tensor, w)
ret2 = modeling.einsum_via_matmul(input_tensor, w, 2)
self.assertAllClose(ret1, ret2)
示例3: concretize
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import einsum [as 别名]
def concretize(self):
"""Returns lower and upper interval bounds."""
lb = ub = None
if self.lower is not None:
lb = (
tf.einsum('nsi,ni->ns',
self._reshape_to_rank(tf.maximum(self.lower.w, 0), 3),
self._reshape_to_rank(self.lower.lower, 2)) +
tf.einsum('nsi,ni->ns',
self._reshape_to_rank(tf.minimum(self.lower.w, 0), 3),
self._reshape_to_rank(self.lower.upper, 2)))
lb += self.lower.b
if self.upper is not None:
ub = (
tf.einsum('nsi,ni->ns',
self._reshape_to_rank(tf.maximum(self.upper.w, 0), 3),
self._reshape_to_rank(self.upper.upper, 2)) +
tf.einsum('nsi,ni->ns',
self._reshape_to_rank(tf.minimum(self.upper.w, 0), 3),
self._reshape_to_rank(self.upper.lower, 2)))
ub += self.upper.b
return bounds.IntervalBounds(lb, ub)
示例4: _concretize_bounds
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import einsum [as 别名]
def _concretize_bounds(lower, upper):
"""Returns lower and upper interval bounds."""
if len(lower.b.shape) == 2:
equation = 'ijk,ij->ik'
elif len(lower.b.shape) == 3:
equation = 'ijnc,ij->inc'
elif len(lower.b.shape) == 4:
equation = 'ijhwc,ij->ihwc'
else:
raise NotImplementedError('Shape unsupported: {}'.format(lower.b.shape))
lb = (tf.einsum(equation, tf.maximum(lower.w, 0), lower.lower) +
tf.einsum(equation, tf.minimum(lower.w, 0), lower.upper) +
lower.b)
ub = (tf.einsum(equation, tf.maximum(upper.w, 0), upper.upper) +
tf.einsum(equation, tf.minimum(upper.w, 0), upper.lower) +
upper.b)
return lb, ub
示例5: call
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import einsum [as 别名]
def call(self, inputs):
inputs = tf.convert_to_tensor(inputs)
rank = tf.rank(inputs)
if rank > 2:
outputs = tf.einsum("aki,aij->akj", inputs, self.kernel)
# Reshape the output back to the original ndim of the input.
if not tf.executing_eagerly():
shape = inputs.get_shape().as_list()
output_shape = shape[:-1] + [self.units]
outputs.set_shape(output_shape)
else:
assert False
# outputs = tf.mat_mul(inputs, self.kernel)
if self.use_bias:
outputs = tf.nn.bias_add(outputs, self.bias)
if self.activation is not None:
return self.activation(outputs) # pylint: disable=not-callable
return outputs
示例6: einsum_via_matmul
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import einsum [as 别名]
def einsum_via_matmul(input_tensor, w, num_inner_dims):
"""Implements einsum via matmul and reshape ops.
Args:
input_tensor: float Tensor of shape [<batch_dims>, <inner_dims>].
w: float Tensor of shape [<inner_dims>, <outer_dims>].
num_inner_dims: int. number of dimensions to use for inner products.
Returns:
float Tensor of shape [<batch_dims>, <outer_dims>].
"""
input_shape = get_shape_list(input_tensor)
w_shape = get_shape_list(w)
batch_dims = input_shape[: -num_inner_dims]
inner_dims = input_shape[-num_inner_dims:]
outer_dims = w_shape[num_inner_dims:]
inner_dim = np.prod(inner_dims)
outer_dim = np.prod(outer_dims)
if num_inner_dims > 1:
input_tensor = tf.reshape(input_tensor, batch_dims + [inner_dim])
if len(w_shape) > 2:
w = tf.reshape(w, [inner_dim, outer_dim])
ret = tf.matmul(input_tensor, w)
if len(outer_dims) > 1:
ret = tf.reshape(ret, batch_dims + outer_dims)
return ret
示例7: dense_layer_3d_proj
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import einsum [as 别名]
def dense_layer_3d_proj(input_tensor,
hidden_size,
head_size,
initializer,
activation,
use_einsum,
name=None):
"""A dense layer with 3D kernel for projection.
Args:
input_tensor: float Tensor of shape [batch,from_seq_length,
num_attention_heads, size_per_head].
hidden_size: The size of hidden layer.
head_size: The size of head.
initializer: Kernel initializer.
activation: Actication function.
use_einsum: bool. Whether to use einsum or reshape+matmul for dense layers.
name: The name scope of this layer.
Returns:
float logits Tensor.
"""
input_shape = get_shape_list(input_tensor)
num_attention_heads = input_shape[2]
with tf.variable_scope(name):
w = tf.get_variable(
name="kernel",
shape=[num_attention_heads * head_size, hidden_size],
initializer=initializer)
w = tf.reshape(w, [num_attention_heads, head_size, hidden_size])
b = tf.get_variable(
name="bias", shape=[hidden_size], initializer=tf.zeros_initializer)
if use_einsum:
ret = tf.einsum("BFND,NDH->BFH", input_tensor, w)
else:
ret = einsum_via_matmul(input_tensor, w, 2)
ret += b
if activation is not None:
return activation(ret)
else:
return ret
示例8: dense_layer_2d
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import einsum [as 别名]
def dense_layer_2d(input_tensor,
output_size,
initializer,
activation,
use_einsum,
num_attention_heads=1,
name=None):
"""A dense layer with 2D kernel.
Args:
input_tensor: Float tensor with rank 3.
output_size: The size of output dimension.
initializer: Kernel initializer.
activation: Activation function.
use_einsum: bool. Whether to use einsum or reshape+matmul for dense layers.
num_attention_heads: number of attention head in attention layer.
name: The name scope of this layer.
Returns:
float logits Tensor.
"""
del num_attention_heads # unused
input_shape = get_shape_list(input_tensor)
hidden_size = input_shape[2]
with tf.variable_scope(name):
w = tf.get_variable(
name="kernel",
shape=[hidden_size, output_size],
initializer=initializer)
b = tf.get_variable(
name="bias", shape=[output_size], initializer=tf.zeros_initializer)
if use_einsum:
ret = tf.einsum("BFH,HO->BFO", input_tensor, w)
else:
ret = tf.matmul(input_tensor, w)
ret += b
if activation is not None:
return activation(ret)
else:
return ret
示例9: _build
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import einsum [as 别名]
def _build(self, modules):
"""Outputs specification value."""
# inputs have shape [batch_size, num_outputs].
if not (self.collapse and
isinstance(modules[-1], verifiable_wrapper.LinearFCWrapper)):
logging.info('Elision of last layer disabled.')
bounds = modules[-1].output_bounds
w = self._c
b = self._d
else:
logging.info('Elision of last layer active.')
# Collapse the last layer.
bounds = modules[-1].input_bounds
w = modules[-1].module.w
b = modules[-1].module.b
w = tf.einsum('ijk,lk->ijl', self._c, w)
b = tf.einsum('ijk,k->ij', self._c, b)
if self._d is not None:
b += self._d
# Maximize z * w + b s.t. lower <= z <= upper.
bounds = bounds_lib.IntervalBounds.convert(bounds)
c = (bounds.lower + bounds.upper) / 2.
r = (bounds.upper - bounds.lower) / 2.
c = tf.einsum('ij,ikj->ik', c, w)
if b is not None:
c += b
r = tf.einsum('ij,ikj->ik', r, tf.abs(w))
# output has shape [batch_size, num_specifications].
return c + r
示例10: evaluate
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import einsum [as 别名]
def evaluate(self, logits):
if len(logits.shape) == 2:
output = tf.einsum('ij,ikj->ik', logits, self._c)
elif len(logits.shape) == 3:
output = tf.einsum('rij,ikj->rik', logits, self._c)
else:
assert len(logits.shape) == 4
output = tf.einsum('rsbo,bso->rbs', logits, self._c)
if self._d is not None:
output += self._d
return output
示例11: apply_linear
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import einsum [as 别名]
def apply_linear(self, wrapper, w, b):
"""Propagate CROWN bounds backward through a linear layer."""
def _linear_propagate(bound):
"""Propagate one side of the bound."""
new_bound_w = tf.einsum('nsk,lk->nsl', bound.w, w)
if b is not None:
bias = tf.tensordot(bound.w, b, axes=1)
return fastlin.LinearExpression(w=new_bound_w, b=bias + bound.b,
lower=wrapper.input_bounds.lower,
upper=wrapper.input_bounds.upper)
ub_expr = _linear_propagate(self.upper) if self.upper else None
lb_expr = _linear_propagate(self.lower) if self.lower else None
return BackwardBounds(lb_expr, ub_expr)
示例12: einsum
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import einsum [as 别名]
def einsum(self, equation, *slices):
"""Override this for custom einsum implementation.
Args:
equation: a string
*slices: a list of tf.Tensor
Returns:
a tf.Tensor
"""
return tf.einsum(equation, *slices)
示例13: create_model
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import einsum [as 别名]
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
image_vector, use_one_hot_embeddings, scope):
"""Creates a model."""
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings,
scope=scope)
if FLAGS.ignore_image:
logit = tf.layers.dense(
model.get_pooled_output(), 1, activation=tf.tanh,
kernel_initializer=
modeling.create_initializer(bert_config.initializer_range))
logit = tf.squeeze(logit, axis=1)
else:
logit = tf.einsum("ij,ij->i", tf.layers.dense(
image_vector,
bert_config.hidden_size,
activation=tf.tanh,
kernel_initializer=
modeling.create_initializer(bert_config.initializer_range)),
model.get_pooled_output(),
name="inner")
return tf.stack([-logit, logit], axis=1)
示例14: dense_layer_3d
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import einsum [as 别名]
def dense_layer_3d(input_tensor,
num_attention_heads,
size_per_head,
initializer,
activation,
name=None):
"""A dense layer with 3D kernel.
Args:
input_tensor: float Tensor of shape [batch, seq_length, hidden_size].
num_attention_heads: Number of attention heads.
size_per_head: The size per attention head.
initializer: Kernel initializer.
activation: Actication function.
name: The name scope of this layer.
Returns:
float logits Tensor.
"""
last_dim = get_shape_list(input_tensor)[-1]
with tf.variable_scope(name):
w = tf.get_variable(
name="kernel",
shape=[last_dim, num_attention_heads * size_per_head],
initializer=initializer)
w = tf.reshape(w, [last_dim, num_attention_heads, size_per_head])
b = tf.get_variable(
name="bias",
shape=[num_attention_heads * size_per_head],
initializer=tf.zeros_initializer)
b = tf.reshape(b, [num_attention_heads, size_per_head])
ret = tf.einsum("abc,cde->abde", input_tensor, w)
ret += b
if activation is not None:
return activation(ret)
else:
return ret
示例15: dense_layer_3d_proj
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import einsum [as 别名]
def dense_layer_3d_proj(input_tensor,
hidden_size,
num_attention_heads,
head_size,
initializer,
activation,
name=None):
"""A dense layer with 3D kernel for projection.
Args:
input_tensor: float Tensor of shape [batch,from_seq_length,
num_attention_heads, size_per_head].
hidden_size: The size of hidden layer.
num_attention_heads: The size of output dimension.
head_size: The size of head.
initializer: Kernel initializer.
activation: Actication function.
name: The name scope of this layer.
Returns:
float logits Tensor.
"""
head_size = hidden_size // num_attention_heads
with tf.variable_scope(name):
w = tf.get_variable(
name="kernel",
shape=[hidden_size, hidden_size],
initializer=initializer)
w = tf.reshape(w, [num_attention_heads, head_size, hidden_size])
b = tf.get_variable(
name="bias", shape=[hidden_size], initializer=tf.zeros_initializer)
ret = tf.einsum("BFNH,NHD->BFD", input_tensor, w)
ret += b
if activation is not None:
return activation(ret)
else:
return ret