本文整理汇总了Python中tensorflow.compat.v1.control_dependencies方法的典型用法代码示例。如果您正苦于以下问题:Python v1.control_dependencies方法的具体用法?Python v1.control_dependencies怎么用?Python v1.control_dependencies使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.control_dependencies方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: append_apply_gradients_ops
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import control_dependencies [as 别名]
def append_apply_gradients_ops(self, gradient_state, opt, grads, training_ops,
loss_scale_params):
device_grads = gradient_state # From 2nd result of preprocess_device_grads.
def get_apply_gradients_ops_func():
"""Returns a list of ops for updating gradients."""
apply_gradients_ops = []
# For each variable, apply the combined gradients for this server on
# the parameter server, and then wait for all other servers to do this.
for i, (g, v) in enumerate(grads):
apply_gradient_op = opt.apply_gradients([(g, v)])
barrier = self.benchmark_cnn.add_sync_queues_and_barrier(
'replicate_variable_%s' % i, [apply_gradient_op])
with tf.control_dependencies([barrier]):
with tf.device(self.benchmark_cnn.cpu_device):
updated_value = v.read_value()
for my_d in range(len(self.benchmark_cnn.devices)):
apply_gradients_ops.append(
device_grads[my_d][i][1].assign(updated_value))
return apply_gradients_ops
variable_mgr_util.append_gradients_with_loss_scale(
training_ops, get_apply_gradients_ops_func, loss_scale_params,
self.grad_has_inf_nan)
示例2: simulate
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import control_dependencies [as 别名]
def simulate(self, action):
# There is subtlety here. We need to collect data
# obs, action = policy(obs), done, reward = env(abs, action)
# Thus we need to enqueue data before assigning new observation
reward, done = self._batch_env.simulate(action)
with tf.control_dependencies([reward, done]):
enqueue_op = self.speculum.enqueue(
[self._observ.read_value(), reward, done, action])
with tf.control_dependencies([enqueue_op]):
assign = self._observ.assign(self._batch_env.observ)
with tf.control_dependencies([assign]):
return tf.identity(reward), tf.identity(done)
示例3: simulate
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import control_dependencies [as 别名]
def simulate(self, action):
reward, done = self._batch_env.simulate(action)
with tf.control_dependencies([reward, done]):
new_observ = tf.expand_dims(self._batch_env.observ, axis=1)
# If we shouldn't stack, i.e. self.history == 1, then just assign
# new_observ to self._observ and return from here.
if self.history == 1:
with tf.control_dependencies([self._observ.assign(new_observ)]):
return tf.identity(reward), tf.identity(done)
# If we should stack, then do the required work.
old_observ = tf.gather(
self._observ.read_value(),
list(range(1, self.history)),
axis=1)
with tf.control_dependencies([new_observ, old_observ]):
with tf.control_dependencies([self._observ.assign(
tf.concat([old_observ, new_observ], axis=1))]):
return tf.identity(reward), tf.identity(done)
示例4: __init__
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import control_dependencies [as 别名]
def __init__(self, *args, **kwargs):
with tf.Graph().as_default():
self._batch_env = SimulatedBatchEnv(*args, **kwargs)
self._actions_t = tf.placeholder(shape=(self.batch_size,), dtype=tf.int32)
self._rewards_t, self._dones_t = self._batch_env.simulate(self._actions_t)
with tf.control_dependencies([self._rewards_t]):
self._obs_t = self._batch_env.observ
self._indices_t = tf.placeholder(shape=(self.batch_size,), dtype=tf.int32)
self._reset_op = self._batch_env.reset(
tf.range(self.batch_size, dtype=tf.int32)
)
self._sess = tf.Session()
self._sess.run(tf.global_variables_initializer())
self._batch_env.initialize(self._sess)
示例5: weight_decay_and_noise
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import control_dependencies [as 别名]
def weight_decay_and_noise(loss, hparams, learning_rate, var_list=None):
"""Apply weight decay and weight noise."""
if var_list is None:
var_list = tf.trainable_variables()
decay_vars = [v for v in var_list]
noise_vars = [v for v in var_list if "/body/" in v.name]
weight_decay_loss = weight_decay(hparams.weight_decay, decay_vars)
if hparams.weight_decay and common_layers.should_generate_summaries():
tf.summary.scalar("losses/weight_decay", weight_decay_loss)
weight_noise_ops = weight_noise(hparams.weight_noise, learning_rate,
noise_vars)
with tf.control_dependencies(weight_noise_ops):
loss = tf.identity(loss)
loss += weight_decay_loss
return loss
示例6: _grad_sparsity
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import control_dependencies [as 别名]
def _grad_sparsity(self):
"""Gradient sparsity."""
# If the sparse minibatch gradient has 10 percent of its entries
# non-zero, its sparsity is 0.1.
# The norm of dense gradient averaged from full dataset
# are roughly estimated norm of minibatch
# sparse gradient norm * sqrt(sparsity)
# An extension maybe only correct the sparse blob.
non_zero_cnt = tf.add_n([tf.count_nonzero(g) for g in self._grad])
all_entry_cnt = tf.add_n([tf.size(g) for g in self._grad])
self._sparsity = tf.cast(non_zero_cnt, self._grad[0].dtype)
self._sparsity /= tf.cast(all_entry_cnt, self._grad[0].dtype)
avg_op = self._moving_averager.apply([self._sparsity,])
with tf.control_dependencies([avg_op]):
self._sparsity_avg = self._moving_averager.average(self._sparsity)
return avg_op
示例7: _apply_cond
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import control_dependencies [as 别名]
def _apply_cond(self, apply_fn, grad, var, *args, **kwargs):
"""Apply conditionally if counter is zero."""
grad_acc = self.get_slot(var, "grad_acc")
def apply_adam(grad_acc, apply_fn, grad, var, *args, **kwargs):
total_grad = (grad_acc + grad) / tf.cast(self._n_t, grad.dtype)
adam_op = apply_fn(total_grad, var, *args, **kwargs)
with tf.control_dependencies([adam_op]):
grad_acc_to_zero_op = grad_acc.assign(
tf.zeros_like(grad_acc), use_locking=self._use_locking)
return tf.group(adam_op, grad_acc_to_zero_op)
def accumulate_gradient(grad_acc, grad):
assign_op = tf.assign_add(grad_acc, grad, use_locking=self._use_locking)
return tf.group(assign_op) # Strip return value
return tf.cond(
tf.equal(self._get_iter_variable(), 0),
lambda: apply_adam(grad_acc, apply_fn, grad, var, *args, **kwargs),
lambda: accumulate_gradient(grad_acc, grad))
示例8: _apply_sparse_shared
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import control_dependencies [as 别名]
def _apply_sparse_shared(self, grad, var, indices, scatter_add):
beta1_power, beta2_power = self._get_beta_accumulators()
beta1_power = tf.cast(beta1_power, var.dtype.base_dtype)
beta2_power = tf.cast(beta2_power, var.dtype.base_dtype)
lr_t = tf.cast(self._lr_t, var.dtype.base_dtype)
beta1_t = tf.cast(self._beta1_t, var.dtype.base_dtype)
beta2_t = tf.cast(self._beta2_t, var.dtype.base_dtype)
epsilon_t = tf.cast(self._epsilon_t, var.dtype.base_dtype)
lr = (lr_t * tf.sqrt(1 - beta2_power) / (1 - beta1_power))
# m_t = beta1 * m + (1 - beta1) * g_t
m = self.get_slot(var, "m")
m_scaled_g_values = grad * (1 - beta1_t)
m_t = tf.assign(m, m * beta1_t, use_locking=self._use_locking)
with tf.control_dependencies([m_t]):
m_t = scatter_add(m, indices, m_scaled_g_values)
# v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
v = self.get_slot(var, "v")
v_scaled_g_values = (grad * grad) * (1 - beta2_t)
v_t = tf.assign(v, v * beta2_t, use_locking=self._use_locking)
with tf.control_dependencies([v_t]):
v_t = scatter_add(v, indices, v_scaled_g_values)
v_sqrt = tf.sqrt(v_t)
var_update = tf.assign_sub(
var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking)
return tf.group(*[var_update, m_t, v_t])
示例9: _apply_cond
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import control_dependencies [as 别名]
def _apply_cond(self, apply_fn, grad, var, *args, **kwargs):
"""Apply conditionally if counter is zero."""
grad_acc = self.get_slot(var, "grad_acc")
def apply_adam(grad_acc, apply_fn, grad, var, *args, **kwargs):
total_grad = (grad_acc + grad) / tf.cast(self._n_t, grad.dtype)
adam_op = apply_fn(total_grad, var, *args, **kwargs)
with tf.control_dependencies([adam_op]):
grad_acc_to_zero_op = grad_acc.assign(tf.zeros_like(grad_acc),
use_locking=self._use_locking)
return tf.group(adam_op, grad_acc_to_zero_op)
def accumulate_gradient(grad_acc, grad):
assign_op = tf.assign_add(grad_acc, grad, use_locking=self._use_locking)
return tf.group(assign_op) # Strip return value
return tf.cond(
tf.equal(self._get_iter_variable(), 0),
lambda: apply_adam(grad_acc, apply_fn, grad, var, *args, **kwargs),
lambda: accumulate_gradient(grad_acc, grad))
示例10: _finish
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import control_dependencies [as 别名]
def _finish(self, update_ops, name_scope):
"""Updates beta_power variables every n batches and incrs counter."""
iter_ = self._get_iter_variable()
beta1_power, beta2_power = self._get_beta_accumulators()
with tf.control_dependencies(update_ops):
with tf.colocate_with(iter_):
def update_beta_op():
update_beta1 = beta1_power.assign(
beta1_power * self._beta1_t,
use_locking=self._use_locking)
update_beta2 = beta2_power.assign(
beta2_power * self._beta2_t,
use_locking=self._use_locking)
return tf.group(update_beta1, update_beta2)
maybe_update_beta = tf.cond(
tf.equal(iter_, 0), update_beta_op, tf.no_op)
with tf.control_dependencies([maybe_update_beta]):
update_iter = iter_.assign(tf.mod(iter_ + 1, self._n_t),
use_locking=self._use_locking)
return tf.group(
*update_ops + [update_iter, maybe_update_beta], name=name_scope)
示例11: fn_device_dependency
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import control_dependencies [as 别名]
def fn_device_dependency(name, device=""):
"""Add control deps for name and device."""
key = name + "_" + device
outs = []
def body():
with tf.control_dependencies(fn_device_dependency_dict()[key]):
yield outs
assert outs
deps = outs
if isinstance(outs[0], (list, tuple)):
assert len(outs) == 1
deps = outs[0]
fn_device_dependency_dict()[key] = deps
if device:
with tf.device(device):
return body()
else:
return body()
示例12: smoothing_cross_entropy_factored
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import control_dependencies [as 别名]
def smoothing_cross_entropy_factored(a, b, labels, confidence):
"""Memory-efficient computation of smoothing cross-entropy.
Avoids realizing the entire logits matrix at once.
Args:
a: a Tensor with shape [batch, inner_dim]
b: a Tensor with shape [vocab_size, inner_dim]
labels: an integer Tensor with shape [batch]
confidence: a float
Returns:
A Tensor with shape [batch]
"""
num_splits = 16
vocab_size = shape_list(b)[0]
labels = approximate_split(labels, num_splits)
a = approximate_split(a, num_splits)
parts = []
for part in range(num_splits):
with tf.control_dependencies(parts[-1:]):
logits = tf.matmul(a[part], b, transpose_b=True)
parts.append(
smoothing_cross_entropy(logits, labels[part], vocab_size, confidence))
return tf.concat(parts, 0)
示例13: testRead
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import control_dependencies [as 别名]
def testRead(self):
batch_size = 2
key_depth = 3
val_depth = 5
memory_size = 4
window_size = 6
x_depth = 10
memory = transformer_memory.TransformerMemory(
batch_size, key_depth, val_depth, memory_size)
x = tf.random_uniform([batch_size, window_size, x_depth], minval=1.0)
vals = tf.random_uniform([batch_size, memory_size, val_depth], minval=1.0)
logits = tf.random_uniform([batch_size, memory_size], minval=1.0)
update_op = memory.set(vals, logits)
with tf.control_dependencies([update_op]):
logits, retrieved_values = memory.read(x)
with self.test_session() as session:
session.run(tf.global_variables_initializer())
logits_values, values = session.run([logits, retrieved_values])
self.assertAllEqual([batch_size, window_size, memory_size],
logits_values.shape)
self.assertAllEqual([batch_size, window_size, val_depth], values.shape)
示例14: testWrite
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import control_dependencies [as 别名]
def testWrite(self):
batch_size = 2
key_depth = 3
val_depth = 5
memory_size = 4
window_size = 6
x_depth = 10
memory = transformer_memory.TransformerMemory(
batch_size, key_depth, val_depth, memory_size)
x = tf.random_uniform([batch_size, window_size, x_depth], minval=1.0)
vals = tf.random_uniform([batch_size, memory_size, val_depth], minval=1.0)
logits = tf.random_uniform([batch_size, memory_size], minval=1.0)
update_op = memory.set(vals, logits)
with tf.control_dependencies([update_op]):
logits, _ = memory.read(x)
write_op = memory.write(x, logits)
mem_vals, mem_logits = memory.get()
with self.test_session() as session:
session.run(tf.global_variables_initializer())
session.run(write_op)
updated_vals, updated_logits = session.run([mem_vals, mem_logits])
self.assertAllEqual([batch_size, memory_size, val_depth],
updated_vals.shape)
self.assertAllEqual([batch_size, memory_size], updated_logits.shape)
示例15: testReset
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import control_dependencies [as 别名]
def testReset(self):
batch_size = 2
key_depth = 3
val_depth = 5
memory_size = 4
memory = transformer_memory.TransformerMemory(
batch_size, key_depth, val_depth, memory_size)
vals = tf.random_uniform([batch_size, memory_size, val_depth], minval=1.0)
logits = tf.random_uniform([batch_size, memory_size], minval=1.0)
update_op = memory.set(vals, logits)
reset_op = memory.reset([1])
mem_vals, mem_logits = memory.get()
assert_op1 = tf.assert_equal(mem_vals[0], vals[0])
assert_op2 = tf.assert_equal(mem_logits[0], logits[0])
with tf.control_dependencies([assert_op1, assert_op2]):
all_zero1 = tf.reduce_sum(tf.abs(mem_vals[1]))
all_zero2 = tf.reduce_sum(tf.abs(mem_logits[1]))
with self.test_session() as session:
session.run(tf.global_variables_initializer())
session.run(update_op)
session.run(reset_op)
zero1, zero2 = session.run([all_zero1, all_zero2])
self.assertAllEqual(0, zero1)
self.assertAllEqual(0, zero2)