当前位置: 首页>>代码示例>>Python>>正文


Python v1.add方法代码示例

本文整理汇总了Python中tensorflow.compat.v1.add方法的典型用法代码示例。如果您正苦于以下问题:Python v1.add方法的具体用法?Python v1.add怎么用?Python v1.add使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.add方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: add_scope

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import add [as 别名]
def add_scope(scope=None, scope_fn=None):
  """Return a decorator which add a TF name/variable scope to a function.

  Note that the function returned by the decorator accept an additional 'name'
  parameter, which can overwrite the name scope given when the function is
  created.

  Args:
    scope (str): name of the scope. If None, the function name is used.
    scope_fn (fct): Either tf.name_scope or tf.variable_scope

  Returns:
    fct: the add_scope decorator
  """
  def decorator(f):

    @functools.wraps(f)
    def decorated(*args, **kwargs):
      name = kwargs.pop("name", None)  # Python 2 hack for keyword only args
      with scope_fn(name or scope or f.__name__):
        return f(*args, **kwargs)

    return decorated

  return decorator 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:27,代码来源:expert_utils.py

示例2: post_attention

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import add [as 别名]
def post_attention(self, token, x):
    """Called after self-attention. The memory can be updated here.

    Args:
      token: Data returned by pre_attention, which can be used to carry over
        state related to the current memory operation.
      x: a Tensor of data after self-attention and feed-forward
    Returns:
      a (possibly modified) version of the input x
    """
    with tf.variable_scope(self.name + "/post_attention", reuse=tf.AUTO_REUSE):
      depth = common_layers.shape_list(x)[-1]
      actual_batch_size = common_layers.shape_list(x)[0]
      memory_output = tf.gather(token["retrieved_mem"],
                                tf.range(actual_batch_size))
      output = tf.add(tf.layers.dense(x, depth, use_bias=False),
                      tf.layers.dense(memory_output, depth))
      with tf.control_dependencies([output]):
        with tf.control_dependencies([
            self.write(token["x"], token["access_logits"])]):
          return tf.identity(output) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:23,代码来源:transformer_memory.py

示例3: testGetRegularizerForConcatWithNone

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import add [as 别名]
def testGetRegularizerForConcatWithNone(self, test_concat, depth):
    image = tf.constant(0.0, shape=[1, 17, 19, 3])
    conv2 = layers.conv2d(image, 5, [1, 1], padding='SAME', scope='conv2')
    other_input = tf.add(
        tf.identity(tf.constant(3.0, shape=[1, 17, 19, depth])), 3.0)
    # other_input has None as regularizer.
    concat = tf.concat([other_input, conv2], 3)
    output = tf.add(concat, concat, name='output_out')
    op = concat.op if test_concat else output.op

    # Instantiate OpRegularizerManager.
    op_handler_dict = self._default_op_handler_dict
    op_handler_dict['Conv2D'] = StubConvSourceOpHandler(add_concat_model_stub)
    op_reg_manager = orm.OpRegularizerManager([output.op], op_handler_dict)

    expected_alive = add_concat_model_stub.expected_alive()
    alive = op_reg_manager.get_regularizer(op).alive_vector
    self.assertAllEqual([True] * depth, alive[:depth])
    self.assertAllEqual(expected_alive['conv2'], alive[depth:]) 
开发者ID:google-research,项目名称:morph-net,代码行数:21,代码来源:op_regularizer_manager_test.py

示例4: testInit_AddConcat_AllOps

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import add [as 别名]
def testInit_AddConcat_AllOps(self):
    with arg_scope(self._batch_norm_scope()):
      inputs = tf.zeros([2, 4, 4, 3])
      c1 = layers.conv2d(inputs, num_outputs=10, kernel_size=3, scope='conv1')
      c2 = layers.conv2d(inputs, num_outputs=10, kernel_size=3, scope='conv2')
      add = c1 + c2
      c3 = layers.conv2d(add, num_outputs=10, kernel_size=3, scope='conv3')
      out = tf.identity(c3)
      concat = tf.concat([c1, c2], axis=3)
      c4 = layers.conv2d(concat, num_outputs=10, kernel_size=3, scope='conv4')

    manager = orm.OpRegularizerManager(
        [out.op], self._default_op_handler_dict, SumGroupingRegularizer)

    # Op c4 is not in the DFS path of out.  Verify that OpRegularizerManager
    # does not process c4.
    self.assertNotIn(c4.op, manager.ops)
    self.assertNotIn(concat.op, manager.ops) 
开发者ID:google-research,项目名称:morph-net,代码行数:20,代码来源:op_regularizer_manager_test.py

示例5: testInit_BlacklistGroup

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import add [as 别名]
def testInit_BlacklistGroup(self):
    with arg_scope(self._batch_norm_scope()):
      inputs = tf.zeros([2, 4, 4, 3])
      c1 = layers.conv2d(inputs, num_outputs=10, kernel_size=3, scope='conv1')
      c2 = layers.conv2d(inputs, num_outputs=10, kernel_size=3, scope='conv2')
      add = c1 + c2
      c3 = layers.conv2d(add, num_outputs=10, kernel_size=3, scope='conv3')

    # Verify c2 has a regularizer.
    manager = orm.OpRegularizerManager(
        [c3.op], self._default_op_handler_dict, SumGroupingRegularizer)
    self.assertIsNotNone(manager.get_regularizer(c2.op))

    # Verify c2 has None regularizer after blacklisting c1 which is grouped.
    manager = orm.OpRegularizerManager(
        [c3.op], self._default_op_handler_dict, SumGroupingRegularizer,
        regularizer_blacklist=['conv1'])
    self.assertIsNone(manager.get_regularizer(c2.op)) 
开发者ID:google-research,项目名称:morph-net,代码行数:20,代码来源:op_regularizer_manager_test.py

示例6: testCorrectSourceOpsWithSkipConnection

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import add [as 别名]
def testCorrectSourceOpsWithSkipConnection(self):
    inputs = tf.zeros([2, 4, 4, 3])
    x0 = layers.conv2d(
        inputs, num_outputs=8, kernel_size=3, activation_fn=None, scope='conv0')
    x1 = tf.nn.relu(layers.batch_norm(x0, scale=True, scope='bn0'))
    x1 = layers.conv2d(
        x1, num_outputs=8, kernel_size=3, activation_fn=None, scope='conv1')
    x2 = tf.add_n([x0, x1], name='add')
    final_op = tf.nn.relu(layers.batch_norm(x2, scale=True, scope='bn1'))

    op_handler_dict = self._default_op_handler_dict
    op_reg_manager = orm.OpRegularizerManager([final_op.op], op_handler_dict)

    # All ops are in the same group
    group = list(op_reg_manager._op_group_dict.values())[0]
    source_op_names = [s.op.name for s in group.source_op_slices]
    self.assertSetEqual(set(['bn0/FusedBatchNormV3', 'bn1/FusedBatchNormV3']),
                        set(source_op_names)) 
开发者ID:google-research,项目名称:morph-net,代码行数:20,代码来源:op_regularizer_manager_test.py

示例7: _variable_with_weight_decay

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import add [as 别名]
def _variable_with_weight_decay(name, shape, stddev, wd):
  """Helper to create an initialized Variable with weight decay.

  Note that the Variable is initialized with a truncated normal distribution.
  A weight decay is added only if one is specified.

  Args:
    name: name of the variable
    shape: list of ints
    stddev: standard deviation of a truncated Gaussian
    wd: add L2Loss weight decay multiplied by this float. If None, weight
        decay is not added for this Variable.

  Returns:
    Variable Tensor
  """
  var = _variable_on_cpu(name, shape,
                         tf.truncated_normal_initializer(stddev=stddev))
  if wd is not None:
    weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
    tf.add_to_collection('losses', weight_decay)
  return var 
开发者ID:tensorflow,项目名称:privacy,代码行数:24,代码来源:deep_cnn.py

示例8: _get_cost_function

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import add [as 别名]
def _get_cost_function(self):
        """Compute the cost of the Mittens objective function.

        If self.mittens = 0, this is the same as the cost of GloVe.
        """
        self.weights = tf.placeholder(
            tf.float32, shape=[self.n_words, self.n_words])
        self.log_coincidence = tf.placeholder(
            tf.float32, shape=[self.n_words, self.n_words])
        self.diffs = tf.subtract(self.model, self.log_coincidence)
        cost = tf.reduce_sum(
            0.5 * tf.multiply(self.weights, tf.square(self.diffs)))
        if self.mittens > 0:
            self.mittens = tf.constant(self.mittens, tf.float32)
            cost += self.mittens * tf.reduce_sum(
                tf.multiply(
                    self.has_embedding,
                    self._tf_squared_euclidean(
                        tf.add(self.W, self.C),
                        self.original_embedding)))
        tf.summary.scalar("cost", cost)
        return cost 
开发者ID:roamanalytics,项目名称:mittens,代码行数:24,代码来源:tf_mittens.py

示例9: f1_metric

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import add [as 别名]
def f1_metric(precision, precision_op, recall, recall_op):
  """Computes F1 based on precision and recall.

  Args:
    precision: <float> [batch_size]
    precision_op: Update op for precision.
    recall: <float> [batch_size]
    recall_op: Update op for recall.

  Returns:
    tensor and update op for F1.
  """
  f1_op = tf.group(precision_op, recall_op)
  numerator = 2 * tf.multiply(precision, recall)
  denominator = tf.add(precision, recall)
  f1 = tf.divide(numerator, denominator)

  # <float> [batch_size]
  zero_vec = tf.zeros_like(f1)
  is_valid = tf.greater(denominator, zero_vec)
  f1 = tf.where(is_valid, x=f1, y=zero_vec)

  return f1, f1_op 
开发者ID:google-research,项目名称:language,代码行数:25,代码来源:nq_long_utils.py

示例10: remap_labels

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import add [as 别名]
def remap_labels(labels,
                 original_labels=None,
                 new_label=None):
  """Remaps labels that have an id in original_labels to new_label.

  Args:
    labels: rank 1 int32 tensor of shape [num_instance] containing the object
      classes.
      original_labels: int list of original labels that should be mapped from.
      new_label: int label to map to
  Returns:
    Remapped labels
  """
  new_labels = labels
  for original_label in original_labels:
    change = tf.where(
        tf.equal(new_labels, original_label),
        tf.add(tf.zeros_like(new_labels), new_label - original_label),
        tf.zeros_like(new_labels))
    new_labels = tf.add(
        new_labels,
        change)
  new_labels = tf.reshape(new_labels, tf.shape(labels))
  return new_labels 
开发者ID:tensorflow,项目名称:models,代码行数:26,代码来源:preprocessor.py

示例11: _test_fill

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import add [as 别名]
def _test_fill(dims, value_data, value_dtype):
    """ Use the fill op to create a tensor of value_data with constant dims."""

    value_data = np.array(value_data, dtype=value_dtype)
    # TF 1.13 TFLite convert method does not accept empty shapes
    if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'):
        with tf.Graph().as_default():
            value = array_ops.placeholder(dtype=value_dtype, name="value", shape=[])
            out = tf.fill(dims,  value)
            compare_tflite_with_tvm([value_data], ["value"], [value], [out])

    with tf.Graph().as_default():
        input1 = array_ops.placeholder(dtype=value_dtype, name="input1", shape=dims)
        # Fill op gets converted to static tensor during conversion
        out = tf.fill(dims,  value_data)
        out1 = tf.add(out, input1)
        input1_data = np.random.uniform(0, 5, size=dims).astype(value_dtype)
        compare_tflite_with_tvm([input1_data], ["input1"], [input1], [out1]) 
开发者ID:apache,项目名称:incubator-tvm,代码行数:20,代码来源:test_forward.py

示例12: _test_quantize_dequantize

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import add [as 别名]
def _test_quantize_dequantize(data):
    """ One iteration of quantize and dequantize """

    # Keras model to force TFLite converter to insert 2 TFLite quantize ops.
    # First TFLite quantize op converts float32 tensor to int8 tensor - Qnn quantize.
    # Second TFLite quantize op converts int8 tensor to int8 tensor - Qnn requantize.
    data_in = tf.keras.layers.Input(shape=data.shape[1:])
    relu = tf.keras.layers.ReLU()(data_in)
    add = tf.keras.layers.Add()([data_in, relu])
    concat = tf.keras.layers.Concatenate(axis=0)([relu, add])
    keras_model = tf.keras.models.Model(inputs=data_in, outputs=concat)
    input_name = data_in.name.split(":")[0]

    # To create quantized values with dynamic range of activations, needs representative dataset
    def representative_data_gen():
        for i in range(1):
            yield [data]

    tflite_model_quant = _quantize_keras_model(keras_model, representative_data_gen)

    tflite_output = run_tflite_graph(tflite_model_quant, data)
    tvm_output = run_tvm_graph(tflite_model_quant, data, input_name)
    tvm.testing.assert_allclose(np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]),
                                rtol=1e-5, atol=1e-2) 
开发者ID:apache,项目名称:incubator-tvm,代码行数:26,代码来源:test_forward.py

示例13: test_forward_multi_input

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import add [as 别名]
def test_forward_multi_input():
    with tf.Graph().as_default():
        in1 = tf.placeholder(tf.int32, shape=[3, 3], name='in1')
        in2 = tf.placeholder(tf.int32, shape=[3, 3], name='in2')
        in3 = tf.placeholder(tf.int32, shape=[3, 3], name='in3')
        in4 = tf.placeholder(tf.int32, shape=[3, 3], name='in4')

        out1 = tf.add(in1, in2, name='out1')
        out2 = tf.subtract(in3, in4, name='out2')
        out = tf.multiply(out1, out2, name='out')
        in_data = np.arange(9, dtype='int32').reshape([3, 3])

        compare_tf_with_tvm([in_data, in_data, in_data, in_data],
                            ['in1:0', 'in2:0', 'in3:0', 'in4:0'], 'out:0')

#######################################################################
# Multi Output to Graph
# --------------------- 
开发者ID:apache,项目名称:incubator-tvm,代码行数:20,代码来源:test_forward.py

示例14: test_placeholder

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import add [as 别名]
def test_placeholder():
    with tf.Graph().as_default():
        in_data1 = np.random.uniform(-5, 5, size=(3, 4, 5)).astype(np.float32)
        var1 = tf.Variable(in_data1, name='in1')
        var2 = array_ops.placeholder_with_default(var1, None, name='place1')

        in_data2 = np.random.uniform(-5, 5, size=(3, 4, 5)).astype(np.float32)
        place1 = array_ops.placeholder(
            shape=in_data1.shape, dtype=in_data1.dtype, name='in2')

        out1 = tf.math.add(var1, var2, name='out1')
        out2 = tf.math.add(out1, place1, name='out2')

        compare_tf_with_tvm([in_data1, in_data2], ['place1:0', 'in2:0'], 'out2:0',
                            init_global_variables=True)

#######################################################################
# OneHot
# ---------------------- 
开发者ID:apache,项目名称:incubator-tvm,代码行数:21,代码来源:test_forward.py

示例15: _test_spop_placeholder_without_shape_info

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import add [as 别名]
def _test_spop_placeholder_without_shape_info():
    with tf.Graph().as_default():

        @function.Defun(*[tf.int32]*2)
        def Forward(x,y):
            print(x.name)
            print(y.name)
            b = tf.add(x, y)
            return b
        pl1 = tf.placeholder(tf.int32,name="pl1")
        pl2 = tf.placeholder(tf.int32,name="pl2")
        pl3 = tf.placeholder(tf.int32, name="pl3")
        data = np.array([[-1, 1], [2, -2]], dtype=np.int32)
        data2 = np.array([[-2, 3], [4, -6]], dtype=np.int32)
        data3 = np.array([[-2, 3], [4, -6]], dtype=np.int32)
        z1 = gen_functional_ops.StatefulPartitionedCall(args=[pl1,pl2], Tout=[tf.int32],f=Forward)
        z2 = z1 + pl3
        compare_tf_with_tvm([data, data2, data3], ['pl1:0', 'pl2:0', 'pl3:0'],
                            ['StatefulPartitionedCall:0',z2.name],  mode='vm', init_global_variables=True) 
开发者ID:apache,项目名称:incubator-tvm,代码行数:21,代码来源:test_forward.py


注:本文中的tensorflow.compat.v1.add方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。