当前位置: 首页>>代码示例>>Python>>正文


Python v1.Session方法代码示例

本文整理汇总了Python中tensorflow.compat.v1.Session方法的典型用法代码示例。如果您正苦于以下问题:Python v1.Session方法的具体用法?Python v1.Session怎么用?Python v1.Session使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.Session方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: evaluate

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Session [as 别名]
def evaluate(self, env_fn, hparams, sampling_temp):
    with tf.Graph().as_default():
      with tf.name_scope("rl_eval"):
        eval_env = env_fn(in_graph=True)
        (collect_memory, _, collect_init) = _define_collect(
            eval_env,
            hparams,
            "ppo_eval",
            eval_phase=True,
            frame_stack_size=self.frame_stack_size,
            force_beginning_resets=False,
            sampling_temp=sampling_temp,
            distributional_size=self._distributional_size,
        )
        model_saver = tf.train.Saver(
            tf.global_variables(hparams.policy_network + "/.*")
            # tf.global_variables("clean_scope.*")  # Needed for sharing params.
        )

        with tf.Session() as sess:
          sess.run(tf.global_variables_initializer())
          collect_init(sess)
          trainer_lib.restore_checkpoint(self.agent_model_dir, model_saver,
                                         sess)
          sess.run(collect_memory) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:27,代码来源:ppo_learner.py

示例2: __init__

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Session [as 别名]
def __init__(self, hparams, action_space, observation_space, policy_dir):
    assert hparams.base_algo == "ppo"
    ppo_hparams = trainer_lib.create_hparams(hparams.base_algo_params)

    frame_stack_shape = (1, hparams.frame_stack_size) + observation_space.shape
    self._frame_stack = np.zeros(frame_stack_shape, dtype=np.uint8)

    with tf.Graph().as_default():
      self.obs_t = tf.placeholder(shape=self.frame_stack_shape, dtype=np.uint8)
      self.logits_t, self.value_function_t = get_policy(
          self.obs_t, ppo_hparams, action_space
      )
      model_saver = tf.train.Saver(
          tf.global_variables(scope=ppo_hparams.policy_network + "/.*")  # pylint: disable=unexpected-keyword-arg
      )
      self.sess = tf.Session()
      self.sess.run(tf.global_variables_initializer())
      trainer_lib.restore_checkpoint(policy_dir, model_saver,
                                     self.sess) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:21,代码来源:player_utils.py

示例3: __init__

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Session [as 别名]
def __init__(
      self, batch_size, observation_space, action_space, policy_hparams,
      policy_dir, sampling_temp
  ):
    super(PolicyAgent, self).__init__(
        batch_size, observation_space, action_space
    )
    self._sampling_temp = sampling_temp
    with tf.Graph().as_default():
      self._observations_t = tf.placeholder(
          shape=((batch_size,) + self.observation_space.shape),
          dtype=self.observation_space.dtype
      )
      (logits, self._values_t) = rl.get_policy(
          self._observations_t, policy_hparams, self.action_space
      )
      actions = common_layers.sample_with_temperature(logits, sampling_temp)
      self._probs_t = tf.nn.softmax(logits / sampling_temp)
      self._actions_t = tf.cast(actions, tf.int32)
      model_saver = tf.train.Saver(
          tf.global_variables(policy_hparams.policy_network + "/.*")  # pylint: disable=unexpected-keyword-arg
      )
      self._sess = tf.Session()
      self._sess.run(tf.global_variables_initializer())
      trainer_lib.restore_checkpoint(policy_dir, model_saver, self._sess) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:27,代码来源:rl_utils.py

示例4: __init__

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Session [as 别名]
def __init__(self, *args, **kwargs):
    with tf.Graph().as_default():
      self._batch_env = SimulatedBatchEnv(*args, **kwargs)

      self._actions_t = tf.placeholder(shape=(self.batch_size,), dtype=tf.int32)
      self._rewards_t, self._dones_t = self._batch_env.simulate(self._actions_t)
      with tf.control_dependencies([self._rewards_t]):
        self._obs_t = self._batch_env.observ
      self._indices_t = tf.placeholder(shape=(self.batch_size,), dtype=tf.int32)
      self._reset_op = self._batch_env.reset(
          tf.range(self.batch_size, dtype=tf.int32)
      )

      self._sess = tf.Session()
      self._sess.run(tf.global_variables_initializer())
      self._batch_env.initialize(self._sess) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:18,代码来源:simulated_batch_gym_env.py

示例5: test_invertibility

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Session [as 别名]
def test_invertibility(self, op, name, dropout=0.0):
    with tf.Graph().as_default():
      tf.set_random_seed(42)
      x = tf.random_uniform(shape=(16, 32, 32, 4))

      if op in [glow_ops.affine_coupling, glow_ops.additive_coupling]:
        with arg_scope([glow_ops.get_dropout], init=False):
          x_inv, _ = op(name, x, reverse=False, dropout=dropout)
          x_inv_inv, _ = op(name, x_inv, reverse=True, dropout=dropout)
      else:
        x_inv, _ = op(name, x, reverse=False)
        x_inv_inv, _ = op(name, x_inv, reverse=True)
      with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        diff = session.run(x - x_inv_inv)
        self.assertTrue(np.allclose(diff, 0.0, atol=1e-5)) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:18,代码来源:glow_ops_test.py

示例6: test_temperature_normal

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Session [as 别名]
def test_temperature_normal(self, temperature):
    with tf.Graph().as_default():
      rng = np.random.RandomState(0)
      # in numpy, so that multiple calls don't trigger different random numbers.
      loc_t = tf.convert_to_tensor(rng.randn(5, 5))
      scale_t = tf.convert_to_tensor(rng.rand(5, 5))
      tempered_normal = glow_ops.TemperedNormal(
          loc=loc_t, scale=scale_t, temperature=temperature)
      # smoke test for a single sample.
      smoke_sample = tempered_normal.sample()
      samples = tempered_normal.sample((10000,), seed=0)

      with tf.Session() as sess:
        ops = [samples, loc_t, scale_t, smoke_sample]
        samples_np, loc_exp, scale_exp, _ = sess.run(ops)
        scale_exp *= temperature
        loc_act = np.mean(samples_np, axis=0)
        scale_act = np.std(samples_np, axis=0)
        self.assertTrue(np.allclose(loc_exp, loc_act, atol=1e-2))
        self.assertTrue(np.allclose(scale_exp, scale_act, atol=1e-2)) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:22,代码来源:glow_ops_test.py

示例7: linear_interpolate_rank

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Session [as 别名]
def linear_interpolate_rank(self):
    with tf.Graph().as_default():
      # Since rank is 1, the first channel should remain 1.0.
      # and the second channel should be interpolated between 1.0 and 6.0
      z1 = np.ones(shape=(4, 4, 2))
      z2 = np.copy(z1)
      z2[:, :, 0] += 0.01
      z2[:, :, 1] += 5.0
      coeffs = np.linspace(0.0, 1.0, 11)
      z1 = np.expand_dims(z1, axis=0)
      z2 = np.expand_dims(z2, axis=0)
      tensor1 = tf.convert_to_tensor(z1, dtype=tf.float32)
      tensor2 = tf.convert_to_tensor(z2, dtype=tf.float32)
      lin_interp_max = glow_ops.linear_interpolate_rank(
          tensor1, tensor2, coeffs)
      with tf.Session() as sess:
        lin_interp_np_max = sess.run(lin_interp_max)
        for lin_interp_np, coeff in zip(lin_interp_np_max, coeffs):
          exp_val = 1.0 + coeff * (6.0 - 1.0)
          self.assertTrue(np.allclose(lin_interp_np[:, :, 0], 1.0))
          self.assertTrue(np.allclose(lin_interp_np[:, :, 1], exp_val)) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:23,代码来源:glow_ops_test.py

示例8: testSpectralNorm

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Session [as 别名]
def testSpectralNorm(self):
    # Test that after 20 calls to apply_spectral_norm, the spectral
    # norm of the normalized matrix is close to 1.0
    with tf.Graph().as_default():
      weights = tf.get_variable("w", dtype=tf.float32, shape=[2, 3, 50, 100])
      weights = tf.multiply(weights, 10.0)
      normed_weight, assign_op = common_layers.apply_spectral_norm(weights)

      with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        for _ in range(20):
          sess.run(assign_op)
          normed_weight, assign_op = common_layers.apply_spectral_norm(
              weights)
        normed_weight = sess.run(normed_weight).reshape(-1, 100)
        _, s, _ = np.linalg.svd(normed_weight)
        self.assertTrue(np.allclose(s[0], 1.0, rtol=0.1)) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:20,代码来源:common_layers_test.py

示例9: testDatasetPacking

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Session [as 别名]
def testDatasetPacking(self):
    dataset = tf.data.Dataset.from_generator(
        example_generator,
        output_types={"inputs": tf.int64, "targets": tf.int64},
        output_shapes={"inputs": tf.TensorShape((None,)),
                       "targets": tf.TensorShape((None,))}
    )
    dataset = generator_utils.pack_dataset(
        dataset, length=5, keys=("inputs", "targets"), use_custom_ops=False)

    with tf.Session().as_default() as sess:
      batch = dataset.make_one_shot_iterator().get_next()
      for reference in reference_packing():
        example = sess.run(batch)
        self.assertAllEqual(set(example.keys()), set(reference.keys()))
        for k in reference:
          self.assertAllEqual(example[k], reference[k]) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:19,代码来源:generator_utils_test.py

示例10: __init__

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Session [as 别名]
def __init__(self, batch_size, *args, **kwargs):
    self._store_rollouts = kwargs.pop("store_rollouts", True)

    super(T2TEnv, self).__init__(*args, **kwargs)

    self.batch_size = batch_size
    self._rollouts_by_epoch_and_split = collections.OrderedDict()
    self.current_epoch = None
    self._should_preprocess_on_reset = True
    with tf.Graph().as_default() as tf_graph:
      self._tf_graph = _Noncopyable(tf_graph)
      self._decoded_image_p = _Noncopyable(
          tf.placeholder(dtype=tf.uint8, shape=(None, None, None))
      )
      self._encoded_image_t = _Noncopyable(
          tf.image.encode_png(self._decoded_image_p.obj)
      )
      self._encoded_image_p = _Noncopyable(tf.placeholder(tf.string))
      self._decoded_image_t = _Noncopyable(
          tf.image.decode_png(self._encoded_image_p.obj)
      )
      self._session = _Noncopyable(tf.Session()) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:24,代码来源:gym_env.py

示例11: generate_samples

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Session [as 别名]
def generate_samples(self, data_dir, tmp_dir, dataset_split):
    with tf.Graph().as_default():
      # train and eval set are generated on-the-fly.
      # test set is the official test-set.
      if dataset_split == problem.DatasetSplit.TEST:
        moving_ds = self.get_test_iterator(tmp_dir)
      else:
        moving_ds = self.get_train_iterator()

      next_video = moving_ds.get_next()
      with tf.Session() as sess:
        sess.run(moving_ds.initializer)

        n_samples = SPLIT_TO_SIZE[dataset_split]
        for _ in range(n_samples):
          next_video_np = sess.run(next_video)
          for frame_number, frame in enumerate(next_video_np):
            yield {
                "frame_number": [frame_number],
                "frame": frame,
            } 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:23,代码来源:moving_mnist.py

示例12: export_module_spec_with_checkpoint

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Session [as 别名]
def export_module_spec_with_checkpoint(module_spec,
                                       checkpoint_path,
                                       export_path,
                                       scope_prefix=""):
  """Exports given checkpoint as tfhub module with given spec."""

  # The main requirement is that it is possible to know how to map from
  # module variable name to checkpoint variable name.
  # This is trivial if the original code used variable scopes,
  # but can be messy if the variables to export are interwined
  # with variables not export.
  with tf.Graph().as_default():
    m = hub.Module(module_spec)
    assign_map = {
        scope_prefix + name: value for name, value in m.variable_map.items()
    }
    tf.train.init_from_checkpoint(checkpoint_path, assign_map)
    init_op = tf.initializers.global_variables()
    with tf.Session() as session:
      session.run(init_op)
      m.export(export_path, session) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:23,代码来源:export.py

示例13: __init__

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Session [as 别名]
def __init__(self):
    # Create a single Session to run all image coding calls.
    self._sess = tf.Session()

    # Initializes function that converts PNG to JPEG data.
    self._png_data = tf.placeholder(dtype=tf.string)
    image = tf.image.decode_png(self._png_data, channels=3)
    self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)

    # Initializes function that converts CMYK JPEG data to RGB JPEG data.
    self._cmyk_data = tf.placeholder(dtype=tf.string)
    image = tf.image.decode_jpeg(self._cmyk_data, channels=0)
    self._cmyk_to_rgb = tf.image.encode_jpeg(image, format='rgb', quality=100)

    # Initializes function that decodes RGB JPEG data.
    self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
    self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3) 
开发者ID:google-research,项目名称:morph-net,代码行数:19,代码来源:build_imagenet_data.py

示例14: _init_graph

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Session [as 别名]
def _init_graph(self):
    """Initialize computation graph for tensorflow.
    """
    with self.graph.as_default():
      self.refiner = im.ImNet(dim=self.dim,
                              in_features=self.codelen,
                              out_features=self.out_features,
                              num_filters=self.num_filters)
      self.global_step = tf.get_variable('global_step', shape=[],
                                         dtype=tf.int64)

      self.pts_ph = tf.placeholder(tf.float32, shape=[self.point_batch, 3])
      self.lat_ph = tf.placeholder(tf.float32, shape=[self.codelen])

      lat = tf.broadcast_to(self.lat_ph[tf.newaxis],
                            [self.point_batch, self.codelen])
      code = tf.concat((self.pts_ph, lat), axis=-1)  # [pb, 3+c]

      vals = self.refiner(code, training=False)  # [pb, 1]
      self.vals = tf.squeeze(vals, axis=1)  # [pb]
      self.saver = tf.train.Saver()
      self.sess = tf.Session()
      self.saver.restore(self.sess, self.ckpt) 
开发者ID:tensorflow,项目名称:graphics,代码行数:25,代码来源:evaluator.py

示例15: testIndexedSlicesGradIsClippedCorrectly

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Session [as 别名]
def testIndexedSlicesGradIsClippedCorrectly(self):
    sparse_grad_indices = np.array([0, 1, 4])
    sparse_grad_dense_shape = [self._grad_vec.size]

    values = tf.constant(self._grad_vec, dtype=tf.float32)
    indices = tf.constant(sparse_grad_indices, dtype=tf.int32)
    dense_shape = tf.constant(sparse_grad_dense_shape, dtype=tf.int32)

    gradient = ops.IndexedSlices(values, indices, dense_shape)
    variable = variables_lib.Variable(self._zero_vec, dtype=tf.float32)

    gradients_to_variables = (gradient, variable)
    gradients_to_variables = learning.clip_gradient_norms(
        [gradients_to_variables], self._max_norm)[0]

    # Ensure the built IndexedSlice has the right form.
    self.assertEqual(gradients_to_variables[1], variable)
    self.assertEqual(gradients_to_variables[0].indices, indices)
    self.assertEqual(gradients_to_variables[0].dense_shape, dense_shape)

    with tf.Session() as sess:
      actual_gradient = sess.run(gradients_to_variables[0].values)
    np_testing.assert_almost_equal(actual_gradient, self._clipped_grad_vec) 
开发者ID:google-research,项目名称:tf-slim,代码行数:25,代码来源:learning_test.py


注:本文中的tensorflow.compat.v1.Session方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。