本文整理汇总了Python中tensorflow.compat.v1.Print方法的典型用法代码示例。如果您正苦于以下问题:Python v1.Print方法的具体用法?Python v1.Print怎么用?Python v1.Print使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.Print方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: decode_jpeg
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Print [as 别名]
def decode_jpeg(image_buffer, scope=None): # , dtype=tf.float32):
"""Decode a JPEG string into one 3-D float image Tensor.
Args:
image_buffer: scalar string Tensor.
scope: Optional scope for op_scope.
Returns:
3-D float Tensor with values ranging from [0, 1).
"""
# with tf.op_scope([image_buffer], scope, 'decode_jpeg'):
# with tf.name_scope(scope, 'decode_jpeg', [image_buffer]):
with tf.name_scope(scope or 'decode_jpeg'):
# Decode the string as an RGB JPEG.
# Note that the resulting image contains an unknown height and width
# that is set dynamically by decode_jpeg. In other words, the height
# and width of image is unknown at compile-time.
image = tf.image.decode_jpeg(image_buffer, channels=3,
fancy_upscaling=False,
dct_method='INTEGER_FAST')
# image = tf.Print(image, [tf.shape(image)], 'Image shape: ')
return image
示例2: Print
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Print [as 别名]
def Print(self, x, data, message, **kwargs): # pylint: disable=invalid-name
"""call tf.Print.
Args:
x: a LaidOutTensor
data: a list of LaidOutTensor
message: a string
**kwargs: keyword arguments to tf.print
Returns:
a LaidOutTensor
"""
tf.logging.info("PlacementMeshImpl::Print")
x = x.to_laid_out_tensor()
new_slices = x.tensor_list[:]
with tf.device(self._devices[0]):
new_slices[0] = tf.Print(
new_slices[0], [t for d in data for t in d.tensor_list],
message, **kwargs)
return self.LaidOutTensor(new_slices)
示例3: print_text
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Print [as 别名]
def print_text(tf_sequences, vocab, use_bpe=False, predict_mode=False):
"""Print text."""
def _print_separator():
if not predict_mode:
tf.logging.info("=" * 80)
print_ops = [tf.py_func(_print_separator, [], [])]
for name, tf_sequence, tf_length, convert2txt in tf_sequences:
def _do_print(n, sequence, lengths, to_txt):
if to_txt:
s = sequence[0][:lengths[0]]
output = id2text(s, vocab, use_bpe=use_bpe)
else:
output = " ".join(sequence[0])
if not predict_mode:
tf.logging.info("%s: %s", n, output)
with tf.control_dependencies(print_ops):
print_ops.append(tf.py_func(
_do_print, [name, tf_sequence, tf_length, convert2txt], []))
with tf.control_dependencies(print_ops):
return tf.py_func(_print_separator, [], [])
示例4: _build_select_slate_op
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Print [as 别名]
def _build_select_slate_op(self):
p_no_click = self._prob_no_click_ph
p = self._doc_affinity_scores_ph
q = self._net_outputs.q_values[0]
with tf.name_scope('select_slate'):
self._output_slate = self._select_slate_fn(self._slate_size, p_no_click,
p, q)
self._output_slate = tf.Print(
self._output_slate, [tf.constant('cp 1'), self._output_slate, p, q],
summarize=10000)
self._output_slate = tf.reshape(self._output_slate, (self._slate_size,))
self._action_counts = tf.get_variable(
'action_counts',
shape=[self._num_candidates],
initializer=tf.zeros_initializer())
output_slate = tf.reshape(self._output_slate, [-1])
output_one_hot = tf.one_hot(output_slate, self._num_candidates)
update_ops = []
for i in range(self._slate_size):
update_ops.append(tf.assign_add(self._action_counts, output_one_hot[i]))
self._select_action_update_op = tf.group(*update_ops)
示例5: body
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Print [as 别名]
def body(self, features):
exp_coupling = ["affine", "additive"]
if self.hparams.coupling not in exp_coupling:
raise ValueError("Expected hparams.coupling to be in %s, got %s" %
(exp_coupling, self.hparams.coupling))
if self.is_training:
init_features = self.create_init_batch(features)
init_op = self.objective_tower(init_features, init=True)
init_op = tf.Print(
init_op, [init_op], message="Triggering data-dependent init.",
first_n=20)
tf.add_to_collection("glow_init_op", init_op)
train_op = self.objective_tower(features, init=False)
return tf.zeros_like(features["targets"]), {"training": train_op}
示例6: debugprint
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Print [as 别名]
def debugprint(x, name=''):
"""Small wrapper for tf.Print which prints summary statistics."""
name += '\t' + x.name
return tf.Print(x,
[tf.reduce_min(x), tf.reduce_mean(x), tf.reduce_max(x)],
name)
示例7: benchmark_handwritten
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Print [as 别名]
def benchmark_handwritten(self):
with tf.Graph().as_default():
ds, opt, hp, w, b = get_data_and_params()
iterator = ds.make_one_shot_iterator()
def loop_body(i, unused_previous_loss_t):
"""Manual implementation of training loop."""
# Call get_next() inside body or else training happens repeatedly on
# the first minibatch only.
x, y = iterator.get_next()
loss_t = loss_fn(x, y, w, b)
train_op = opt.minimize(loss_t, var_list=(w, b))
i = tf.cond(tf.equal(i % 100, 0),
lambda: tf.Print(i, [i, loss_t], message='Step, loss: '),
lambda: i)
with tf.control_dependencies([train_op]):
return i + 1, loss_t
_, final_loss_t = tf.while_loop(
lambda i, _: i < hp.train_steps,
loop_body,
[tf.constant(0), tf.constant(0.0)])
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
def target():
loss_val = sess.run(final_loss_t)
assert 0.1 < loss_val < 1, loss_val
self.time_execution(
'Handwritten',
target,
iter_volume=hp.train_steps,
iter_unit='training steps')
示例8: print_dataset
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Print [as 别名]
def print_dataset(dataset):
"""tf.Print dataset fields for debugging purposes."""
def my_fn(x):
return {k: tf.Print(v, [v], k + ": ") for k, v in x.items()}
return dataset.map(my_fn)
示例9: maybe_print_dataset
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Print [as 别名]
def maybe_print_dataset(dataset, should_print=False):
"""tf.Print dataset for debugging purposes."""
return print_dataset(dataset) if should_print else dataset
示例10: call
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Print [as 别名]
def call(self, inputs, modulation=None):
mean, variance = self._get_moments(inputs)
# inputs = tf.Print(inputs, [mean, variance, self.beta, self.gamma], "NORM")
return tf.nn.batch_normalization(
inputs, mean, variance, self.beta, self.gamma, self.epsilon,
name="normalize")
示例11: simulate
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Print [as 别名]
def simulate(self, action):
with tf.name_scope("environment/simulate"):
actions = tf.concat([tf.expand_dims(action, axis=1)] * self._num_frames,
axis=1)
history = self.history_buffer.get_all_elements()
with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
# We only need 1 target frame here, set it.
hparams_target_frames = self._model.hparams.video_num_target_frames
self._model.hparams.video_num_target_frames = 1
model_output = self._model.infer({
"inputs": history,
"input_action": actions,
"reset_internal_states": self._reset_model.read_value()
})
self._model.hparams.video_num_target_frames = hparams_target_frames
observ = tf.cast(tf.squeeze(model_output["targets"], axis=1),
self.observ_dtype)
reward = tf.to_float(model_output["target_reward"])
reward = tf.reshape(reward, shape=(self.batch_size,)) + self._min_reward
if self._intrinsic_reward_scale:
# Use the model's uncertainty about its prediction as an intrinsic
# reward. The uncertainty is measured by the log probability of the
# predicted pixel value.
if "targets_logits" not in model_output:
raise ValueError("The use of intrinsic rewards requires access to "
"the logits. Ensure that model.infer returns "
"'targets_logits'")
uncertainty_reward = compute_uncertainty_reward(
model_output["targets_logits"], model_output["targets"])
uncertainty_reward = tf.minimum(
1., self._intrinsic_reward_scale * uncertainty_reward)
uncertainty_reward = tf.Print(uncertainty_reward, [uncertainty_reward],
message="uncertainty_reward", first_n=1,
summarize=8)
reward += uncertainty_reward
done = tf.constant(False, tf.bool, shape=(self.batch_size,))
with tf.control_dependencies([observ]):
dump_frame_op = tf.cond(self._video_condition,
lambda: tf.py_func(self._video_dump_frame, # pylint: disable=g-long-lambda
[observ, reward], []),
tf.no_op)
with tf.control_dependencies(
[self._observ.assign(observ),
self.history_buffer.move_by_one_element(observ), dump_frame_op]):
clear_reset_model_op = tf.assign(self._reset_model, tf.constant(0.0))
with tf.control_dependencies([clear_reset_model_op]):
return tf.identity(reward), tf.identity(done)
示例12: sample
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Print [as 别名]
def sample(news_config: GroverConfig, initial_context, eos_token, min_len, ignore_ids=None, p_for_topp=0.95,
do_topk=False):
"""
V1 version of: sample outputs from a model, and do it all at once
:param news_config: Configuration used to construct the model
:param initial_context: [batch_size, seq_length] that we'll start generating with
:param eos_token: Stop generating if you see this (tf scalar)
:param min_len: min length of sample
:param ignore_ids: NEVER GENERATE THESE [vocab_size]
:return:
"""
batch_size, _ = get_shape_list(initial_context, expected_rank=2)
if ignore_ids is None:
ignore_ids = tf.constant([x == 0 for x in range(news_config.vocab_size)], dtype=tf.bool)
with tf.name_scope('sample_sequence'):
# Initial call to get cache
context_output = initialize_from_context(initial_context, ignore_ids=ignore_ids, news_config=news_config,
p_for_topp=p_for_topp,
do_topk=do_topk)
ctx = context_output['tokens']
cache = context_output['cache']
probs = context_output['probs']
def body(ctx, cache, probs):
""" for whatever reason this didn't work when I ran it on more than one at once... ugh."""
next_outputs = sample_step(ctx[:, -1][:, None], ignore_ids=ignore_ids, news_config=news_config,
batch_size=batch_size, p_for_topp=p_for_topp, cache=cache,
do_topk=do_topk)
# Update everything
new_cache = tf.concat([cache, next_outputs['new_cache']], axis=-2)
new_ids = tf.concat([ctx, next_outputs['new_tokens'][:, None]], axis=1)
new_probs = tf.concat([probs, next_outputs['new_probs'][:, None]], axis=1)
return [new_ids, new_cache, new_probs]
def cond(ctx, cache, probs):
# ctx = tf.Print(ctx,[tf.shape(ctx)])
is_eos = tf.reduce_all(tf.reduce_any(tf.equal(ctx[:,-1:], eos_token), axis=1))
is_len = tf.greater(get_shape_list(ctx)[1], min_len)
return tf.logical_not(tf.logical_and(is_eos, is_len))
tokens, cache, probs = tf.while_loop(
cond=cond, body=body, maximum_iterations=1025 - get_shape_list(ctx)[1],
loop_vars=[ctx, cache, probs],
shape_invariants=[tf.TensorShape([batch_size, None]),
tf.TensorShape(
[batch_size, news_config.num_hidden_layers, 2,
news_config.num_attention_heads,
None, news_config.hidden_size // news_config.num_attention_heads]),
tf.TensorShape([batch_size, None]),
],
back_prop=False,
)
return tokens, probs
示例13: optimize_log_loss
# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import Print [as 别名]
def optimize_log_loss(decoder_tgt, decoder_outputs, weights, hps):
"""Optimize log loss.
Args:
decoder_tgt: gold outputs. [batch_size, len, vocab_size]
decoder_outputs: predictions. [batch_size, len, vocab_size]
weights: [batch_size, len] Mask.
hps: hyperparams
Returns:
loss: Loss.
train_op: Tensorflow Op for updating parameters.
"""
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=decoder_tgt,
logits=decoder_outputs.rnn_output)
loss = tf.reduce_mean(loss * weights)
# loss = tf.Print(loss, [loss])
global_step = tf.train.get_global_step()
values = [hps.learning_rate,
hps.learning_rate / 5.,
hps.learning_rate / 10.,
hps.learning_rate / 25.,
hps.learning_rate / 50.]
boundaries = [hps.lr_schedule,
int(hps.lr_schedule*1.5),
hps.lr_schedule*2,
int(hps.lr_schedule*2.5)]
learning_rate = tf.train.piecewise_constant(
global_step, boundaries, values)
assert hps.trainer == "adam", "Only supporting Adam now."
trainable_var_list = tf.trainable_variables()
grads = tf.gradients(loss, trainable_var_list)
gvs = list(zip(grads, trainable_var_list))
grads = [g for g, _ in gvs]
train_op = adam.adam(
trainable_var_list,
grads,
learning_rate,
partial(adam.warmup_constant),
hps.total_steps,
weight_decay=hps.weight_decay,
max_grad_norm=hps.max_grad_norm,
bias_l2=True)
return loss, train_op