当前位置: 首页>>代码示例>>Python>>正文


Python v1.FixedLenFeature方法代码示例

本文整理汇总了Python中tensorflow.compat.v1.FixedLenFeature方法的典型用法代码示例。如果您正苦于以下问题:Python v1.FixedLenFeature方法的具体用法?Python v1.FixedLenFeature怎么用?Python v1.FixedLenFeature使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.FixedLenFeature方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: example_reading_spec

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import FixedLenFeature [as 别名]
def example_reading_spec(self):
    extra_data_fields, extra_data_items_to_decoders = self.extra_reading_spec

    data_fields = {
        "image/encoded": tf.FixedLenFeature((), tf.string),
        "image/format": tf.FixedLenFeature((), tf.string),
    }
    data_fields.update(extra_data_fields)

    data_items_to_decoders = {
        "frame":
            contrib.slim().tfexample_decoder.Image(
                image_key="image/encoded",
                format_key="image/format",
                shape=[self.frame_height, self.frame_width, self.num_channels],
                channels=self.num_channels),
    }
    data_items_to_decoders.update(extra_data_items_to_decoders)

    return data_fields, data_items_to_decoders 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:22,代码来源:video_utils.py

示例2: example_reading_spec

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import FixedLenFeature [as 别名]
def example_reading_spec(self):
    data_fields, data_items_to_decoders = (
        super(ImageVqav2Tokens10kLabels3k, self).example_reading_spec())
    data_fields["image/image_id"] = tf.FixedLenFeature((), tf.int64)
    data_fields["image/question_id"] = tf.FixedLenFeature((), tf.int64)
    data_fields["image/question"] = tf.FixedLenSequenceFeature(
        (), tf.int64, allow_missing=True)
    data_fields["image/answer"] = tf.FixedLenSequenceFeature(
        (), tf.int64, allow_missing=True)

    slim = contrib.slim()
    data_items_to_decoders["question"] = slim.tfexample_decoder.Tensor(
        "image/question")
    data_items_to_decoders["targets"] = slim.tfexample_decoder.Tensor(
        "image/answer")
    return data_fields, data_items_to_decoders 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:18,代码来源:vqa.py

示例3: example_reading_spec

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import FixedLenFeature [as 别名]
def example_reading_spec(self):
    """Return a mix of env and video data fields and decoders."""
    slim = contrib.slim()
    video_fields, video_decoders = (
        video_utils.VideoProblem.example_reading_spec(self))
    env_fields, env_decoders = (
        gym_env_problem.GymEnvProblem.example_reading_spec(self))

    # Remove raw observations field since we want to capture them as videos.
    env_fields.pop(env_problem.OBSERVATION_FIELD)
    env_decoders.pop(env_problem.OBSERVATION_FIELD)

    # Add frame number spec and decoder.
    env_fields[_FRAME_NUMBER_FIELD] = tf.FixedLenFeature((1,), tf.int64)
    env_decoders[_FRAME_NUMBER_FIELD] = slim.tfexample_decoder.Tensor(
        _FRAME_NUMBER_FIELD)

    # Add video fields and decoders
    env_fields.update(video_fields)
    env_decoders.update(video_decoders)
    return env_fields, env_decoders 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:23,代码来源:rendered_env_problem.py

示例4: serving_input_receiver_fn

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import FixedLenFeature [as 别名]
def serving_input_receiver_fn():
  """Creates an input function for serving."""
  seq_len = FLAGS.max_seq_length
  serialized_example = tf.placeholder(
      dtype=tf.string, shape=[None], name="serialized_example")
  features = {
      "input_ids": tf.FixedLenFeature([seq_len], dtype=tf.int64),
      "input_mask": tf.FixedLenFeature([seq_len], dtype=tf.int64),
      "segment_ids": tf.FixedLenFeature([seq_len], dtype=tf.int64),
  }
  feature_map = tf.parse_example(serialized_example, features=features)
  feature_map["is_real_example"] = tf.constant(1, dtype=tf.int32)
  feature_map["label_ids"] = tf.constant(0, dtype=tf.int32)

  # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
  # So cast all int64 to int32.
  for name in feature_map.keys():
    t = feature_map[name]
    if t.dtype == tf.int64:
      t = tf.to_int32(t)
    feature_map[name] = t

  return tf.estimator.export.ServingInputReceiver(
      features=feature_map, receiver_tensors=serialized_example) 
开发者ID:google-research,项目名称:albert,代码行数:26,代码来源:run_classifier.py

示例5: __init__

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import FixedLenFeature [as 别名]
def __init__(self, include_mask=False, regenerate_source_id=False):
    self._include_mask = include_mask
    self._regenerate_source_id = regenerate_source_id
    self._keys_to_features = {
        'image/encoded': tf.FixedLenFeature((), tf.string),
        'image/source_id': tf.FixedLenFeature((), tf.string, ''),
        'image/height': tf.FixedLenFeature((), tf.int64, -1),
        'image/width': tf.FixedLenFeature((), tf.int64, -1),
        'image/object/bbox/xmin': tf.VarLenFeature(tf.float32),
        'image/object/bbox/xmax': tf.VarLenFeature(tf.float32),
        'image/object/bbox/ymin': tf.VarLenFeature(tf.float32),
        'image/object/bbox/ymax': tf.VarLenFeature(tf.float32),
        'image/object/class/label': tf.VarLenFeature(tf.int64),
        'image/object/area': tf.VarLenFeature(tf.float32),
        'image/object/is_crowd': tf.VarLenFeature(tf.int64),
    }
    if include_mask:
      self._keys_to_features.update({
          'image/object/mask':
              tf.VarLenFeature(tf.string),
      }) 
开发者ID:JunweiLiang,项目名称:Object_Detection_Tracking,代码行数:23,代码来源:tf_example_decoder.py

示例6: test_tensorspec_to_feature_dict

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import FixedLenFeature [as 别名]
def test_tensorspec_to_feature_dict(self):
    features, tensor_spec_dict = utils.tensorspec_to_feature_dict(
        mock_nested_subset_spec, decode_images=True)
    self.assertDictEqual(tensor_spec_dict, {
        'images': T1,
        'actions': T2,
    })
    self.assertDictEqual(
        features, {
            'images': tf.FixedLenFeature((), tf.string),
            'actions': tf.FixedLenFeature(T2.shape, T2.dtype),
        })
    features, tensor_spec_dict = utils.tensorspec_to_feature_dict(
        mock_nested_subset_spec, decode_images=False)
    self.assertDictEqual(tensor_spec_dict, {
        'images': T1,
        'actions': T2,
    })
    self.assertDictEqual(
        features, {
            'images': tf.FixedLenFeature(T1.shape, T1.dtype),
            'actions': tf.FixedLenFeature(T2.shape, T2.dtype),
        }) 
开发者ID:google-research,项目名称:tensor2robot,代码行数:25,代码来源:tensorspec_utils_test.py

示例7: _get_feature

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import FixedLenFeature [as 别名]
def _get_feature(tensor_spec,
                 decode_images = True):
  """Get FixedLenfeature or FixedLenSequenceFeature for a tensor spec."""
  varlen_default_value = getattr(tensor_spec, 'varlen_default_value', None)
  if getattr(tensor_spec, 'is_sequence', False):
    cls = tf.FixedLenSequenceFeature
  elif varlen_default_value is not None:
    cls = tf.VarLenFeature
  else:
    cls = tf.FixedLenFeature
  if decode_images and is_encoded_image_spec(tensor_spec):
    if varlen_default_value is not None:
      # Contains a variable length list of images.
      return cls(tf.string)
    elif len(tensor_spec.shape) > 3:
      # Contains a fixed length list of images.
      return cls((tensor_spec.shape[0]), tf.string)
    else:
      return cls((), tf.string)
  elif varlen_default_value is not None:
    return cls(tensor_spec.dtype)
  else:
    return cls(tensor_spec.shape, tensor_spec.dtype) 
开发者ID:google-research,项目名称:tensor2robot,代码行数:25,代码来源:tensorspec_utils.py

示例8: main

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import FixedLenFeature [as 别名]
def main(_):
  # Define schema.
  raw_metadata = dataset_metadata.DatasetMetadata(
      dataset_schema.from_feature_spec({
          'text': tf.FixedLenFeature([], tf.string),
          'language_code': tf.FixedLenFeature([], tf.string),
      }))

  # Add in padding tokens.
  reserved_tokens = FLAGS.reserved_tokens
  if FLAGS.num_pad_tokens:
    padded_tokens = ['<pad>']
    padded_tokens += ['<pad%d>' % i for i in range(1, FLAGS.num_pad_tokens)]
    reserved_tokens = padded_tokens + reserved_tokens

  params = learner.Params(FLAGS.upper_thresh, FLAGS.lower_thresh,
                          FLAGS.num_iterations, FLAGS.max_input_tokens,
                          FLAGS.max_token_length, FLAGS.max_unique_chars,
                          FLAGS.vocab_size, FLAGS.slack_ratio,
                          FLAGS.include_joiner_token, FLAGS.joiner,
                          reserved_tokens)

  generate_vocab(FLAGS.data_file, FLAGS.vocab_file, FLAGS.metrics_file,
                 raw_metadata, params) 
开发者ID:tensorflow,项目名称:text,代码行数:26,代码来源:generate_vocab.py

示例9: parse_example

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import FixedLenFeature [as 别名]
def parse_example(serialized_example):
  """Parse example."""
  features = tf.parse_single_example(
      serialized_example,
      features={
          "question":
              tf.FixedLenFeature([], tf.string),
          "context":
              tf.FixedLenSequenceFeature(
                  dtype=tf.string, shape=[], allow_missing=True),
          "long_answer_indices":
              tf.FixedLenSequenceFeature(
                  dtype=tf.int64, shape=[], allow_missing=True)
      })
  features["question"] = features["question"]
  features["context"] = features["context"]
  features["long_answer_indices"] = tf.to_int32(features["long_answer_indices"])
  return features 
开发者ID:google-research,项目名称:language,代码行数:20,代码来源:nq_long_dataset.py

示例10: _parse_fn

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import FixedLenFeature [as 别名]
def _parse_fn(self, value):
    """Parses an image and its label from a serialized TFExample.

    Args:
      value: serialized string containing an TFExample.

    Returns:
      Returns a tuple of (image, label) from the TFExample.
    """
    if FLAGS.get_flag_value('pseudo_label_key', None):
      self.ORIGINAL_LABEL_KEY = FLAGS.get_flag_value(
          'original_label_key', None)
      assert self.ORIGINAL_LABEL_KEY is not None, (
          'You must set original_label_key for pseudo labeling.')

      #Replace original label_key with pseudo_label_key.
      self.LABEL_KEY = FLAGS.get_flag_value('pseudo_label_key', None)
      self.FEATURE_MAP.update({
          self.LABEL_KEY: tf.FixedLenFeature(shape=[], dtype=tf.int64),
          self.ORIGINAL_LABEL_KEY: tf.FixedLenFeature(
              shape=[], dtype=tf.int64),
          self.FLAG_KEY: tf.FixedLenFeature(shape=[], dtype=tf.int64),
      })
    return tf.parse_single_example(value, self.FEATURE_MAP) 
开发者ID:google-research,项目名称:s4l,代码行数:26,代码来源:datasets.py

示例11: __call__

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import FixedLenFeature [as 别名]
def __call__(self, example_string):
    """Processes a single example string.

    Extracts and processes the feature, and ignores the label.

    Args:
      example_string: str, an Example protocol buffer.

    Returns:
      feat: The feature tensor.
    """
    feat = tf.parse_single_example(
        example_string,
        features={
            'image/embedding':
                tf.FixedLenFeature([self.feat_len], dtype=tf.float32),
            'image/class/label':
                tf.FixedLenFeature([], tf.int64)
        })['image/embedding']

    return feat 
开发者ID:google-research,项目名称:meta-dataset,代码行数:23,代码来源:decoder.py

示例12: parse_and_preprocess

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import FixedLenFeature [as 别名]
def parse_and_preprocess(self, value, batch_position):
    """Parse an TFRecord."""
    del batch_position
    assert self.supports_datasets()
    context_features = {
        'labels': tf.VarLenFeature(dtype=tf.int64),
        'input_length': tf.FixedLenFeature([], dtype=tf.int64),
        'label_length': tf.FixedLenFeature([], dtype=tf.int64),
    }
    sequence_features = {
        'features': tf.FixedLenSequenceFeature([161], dtype=tf.float32)
    }
    context_parsed, sequence_parsed = tf.parse_single_sequence_example(
        serialized=value,
        context_features=context_features,
        sequence_features=sequence_features,
    )

    return [
        # Input
        tf.expand_dims(sequence_parsed['features'], axis=2),
        # Label
        tf.cast(
            tf.reshape(
                tf.sparse_tensor_to_dense(context_parsed['labels']), [-1]),
            dtype=tf.int32),
        # Input length
        tf.cast(
            tf.reshape(context_parsed['input_length'], [1]),
            dtype=tf.int32),
        # Label length
        tf.cast(
            tf.reshape(context_parsed['label_length'], [1]),
            dtype=tf.int32),
    ] 
开发者ID:tensorflow,项目名称:benchmarks,代码行数:37,代码来源:preprocessing.py

示例13: example_reading_spec

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import FixedLenFeature [as 别名]
def example_reading_spec(self):
    data_fields, data_items_to_decoders = (
        super(BabiQa, self).example_reading_spec())
    data_fields["targets"] = tf.FixedLenFeature([1], tf.int64)
    return (data_fields, data_items_to_decoders) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:7,代码来源:babi_qa.py

示例14: _references_content

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import FixedLenFeature [as 别名]
def _references_content(ref_files):
  """Returns dict<str ref_url, str ref_content>."""
  example_spec = {
      "url": tf.FixedLenFeature([], tf.string),
      "content": tf.FixedLenFeature([], tf.string),
  }
  data = {}
  for ex in generator_utils.tfrecord_iterator(
      ref_files, gzipped=True, example_spec=example_spec):
    data[ex["url"]] = text_encoder.to_unicode(ex["content"])
  return data 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:13,代码来源:wikisum.py

示例15: extra_reading_spec

# 需要导入模块: from tensorflow.compat import v1 [as 别名]
# 或者: from tensorflow.compat.v1 import FixedLenFeature [as 别名]
def extra_reading_spec(self):
    """Additional data fields to store on disk and their decoders."""
    data_fields = {
        "frame_number": tf.FixedLenFeature([1], tf.int64),
        "action": tf.FixedLenFeature([4], tf.float32),
    }
    decoders = {
        "frame_number":
            contrib.slim().tfexample_decoder.Tensor(tensor_key="frame_number"),
        "action":
            contrib.slim().tfexample_decoder.Tensor(tensor_key="action"),
    }
    return data_fields, decoders 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:15,代码来源:bair_robot_pushing.py


注:本文中的tensorflow.compat.v1.FixedLenFeature方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。