本文整理汇总了Python中tensorflow.compat方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.compat方法的具体用法?Python tensorflow.compat怎么用?Python tensorflow.compat使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.compat方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_tf_summary_export
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import compat [as 别名]
def test_tf_summary_export(self):
# Ensure that TF wasn't already imported, since we want this test to cover
# the entire flow of "import tensorflow; use tf.summary" and if TF was in
# fact already imported that reduces the comprehensiveness of the test.
# This means this test has to be kept in its own file and that no other
# test methods in this file should import tensorflow.
self.assertEqual("notfound", sys.modules.get("tensorflow", "notfound"))
import tensorflow as tf
if not tf.__version__.startswith("2."):
if hasattr(tf, "compat") and hasattr(tf.compat, "v2"):
tf = tf.compat.v2
else:
self.skipTest("TF v2 summary API not available")
# Check that tf.summary contains both TB-provided and TF-provided symbols.
expected_symbols = frozenset(
["scalar", "image", "audio", "histogram", "text"]
+ ["write", "create_file_writer", "SummaryWriter"]
)
self.assertLessEqual(expected_symbols, frozenset(dir(tf.summary)))
# Ensure we can dereference symbols as well.
print(tf.summary.scalar)
print(tf.summary.write)
示例2: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import compat [as 别名]
def __init__(self):
modules = []
if hasattr(tf_.compat, 'v1'):
modules.append(tf_.compat.v1)
self.modules = modules
示例3: import_tf
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import compat [as 别名]
def import_tf(cls):
import tensorflow as tf
# keep a reference to the v1 API as long as v2 provides compatibility
tf1 = None
tf_version = tf.__version__.split(".", 2)
if tf_version[0] == "1":
tf1 = tf
elif getattr(tf, "compat", None) is not None and getattr(tf.compat, "v1", None) is not None:
tf1 = tf.compat.v1
return tf, tf1, tf_version