本文整理汇总了Python中tensorflow.cast方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.cast方法的具体用法?Python tensorflow.cast怎么用?Python tensorflow.cast使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.cast方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _create_autosummary_var
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cast [as 别名]
def _create_autosummary_var(name, value_expr):
assert not _autosummary_finalized
v = tf.cast(value_expr, tf.float32)
if v.shape.ndims is 0:
v = [v, np.float32(1.0)]
elif v.shape.ndims is 1:
v = [tf.reduce_sum(v), tf.cast(tf.shape(v)[0], tf.float32)]
else:
v = [tf.reduce_sum(v), tf.reduce_prod(tf.cast(tf.shape(v), tf.float32))]
v = tf.cond(tf.is_finite(v[0]), lambda: tf.stack(v), lambda: tf.zeros(2))
with tf.control_dependencies(None):
var = tf.Variable(tf.zeros(2)) # [numerator, denominator]
update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v))
if name in _autosummary_vars:
_autosummary_vars[name].append(var)
else:
_autosummary_vars[name] = [var]
return update_op
#----------------------------------------------------------------------------
# Call filewriter.add_summary() with all summaries in the default graph,
# automatically finalizing and merging them on the first call.
示例2: minibatch_stddev_layer
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cast [as 别名]
def minibatch_stddev_layer(x, group_size=4):
with tf.variable_scope('MinibatchStddev'):
group_size = tf.minimum(group_size, tf.shape(x)[0]) # Minibatch must be divisible by (or smaller than) group_size.
s = x.shape # [NCHW] Input shape.
y = tf.reshape(x, [group_size, -1, s[1], s[2], s[3]]) # [GMCHW] Split minibatch into M groups of size G.
y = tf.cast(y, tf.float32) # [GMCHW] Cast to FP32.
y -= tf.reduce_mean(y, axis=0, keep_dims=True) # [GMCHW] Subtract mean over group.
y = tf.reduce_mean(tf.square(y), axis=0) # [MCHW] Calc variance over group.
y = tf.sqrt(y + 1e-8) # [MCHW] Calc stddev over group.
y = tf.reduce_mean(y, axis=[1,2,3], keep_dims=True) # [M111] Take average over fmaps and pixels.
y = tf.cast(y, x.dtype) # [M111] Cast back to original data type.
y = tf.tile(y, [group_size, 1, s[2], s[3]]) # [N1HW] Replicate over group and pixels.
return tf.concat([x, y], axis=1) # [NCHW] Append as new fmap.
#----------------------------------------------------------------------------
# Generator network used in the paper.
示例3: fprop
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cast [as 别名]
def fprop(self, x, y, **kwargs):
kwargs.update(self.kwargs)
if self.attack is not None:
x = x, self.attack(x)
else:
x = x,
# Catching RuntimeError: Variable -= value not supported by tf.eager.
try:
y -= self.smoothing * (y - 1. / tf.cast(y.shape[-1], y.dtype))
except RuntimeError:
y.assign_sub(self.smoothing * (y - 1. / tf.cast(y.shape[-1],
y.dtype)))
logits = [self.model.get_logits(x, **kwargs) for x in x]
loss = sum(
tf.reduce_mean(softmax_cross_entropy_with_logits(labels=y,
logits=logit))
for logit in logits)
return loss
示例4: from_float32_to_uint8
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cast [as 别名]
def from_float32_to_uint8(
tensor,
tensor_key='tensor',
min_key='min',
max_key='max'):
"""
:param tensor:
:param tensor_key:
:param min_key:
:param max_key:
:returns:
"""
tensor_min = tf.reduce_min(tensor)
tensor_max = tf.reduce_max(tensor)
return {
tensor_key: tf.cast(
(tensor - tensor_min) / (tensor_max - tensor_min + 1e-16)
* 255.9999, dtype=tf.uint8),
min_key: tensor_min,
max_key: tensor_max
}
示例5: time_stretch
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cast [as 别名]
def time_stretch(
spectrogram,
factor=1.0,
method=tf.image.ResizeMethod.BILINEAR):
""" Time stretch a spectrogram preserving shape in tensorflow. Note that
this is an approximation in the frequency domain.
:param spectrogram: Input spectrogram to be time stretched as tensor.
:param factor: (Optional) Time stretch factor, must be >0, default to 1.
:param mehtod: (Optional) Interpolation method, default to BILINEAR.
:returns: Time stretched spectrogram as tensor with same shape.
"""
T = tf.shape(spectrogram)[0]
T_ts = tf.cast(tf.cast(T, tf.float32) * factor, tf.int32)[0]
F = tf.shape(spectrogram)[1]
ts_spec = tf.image.resize_images(
spectrogram,
[T_ts, F],
method=method,
align_corners=True)
return tf.image.resize_image_with_crop_or_pad(ts_spec, T, F)
示例6: pitch_shift
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cast [as 别名]
def pitch_shift(
spectrogram,
semitone_shift=0.0,
method=tf.image.ResizeMethod.BILINEAR):
""" Pitch shift a spectrogram preserving shape in tensorflow. Note that
this is an approximation in the frequency domain.
:param spectrogram: Input spectrogram to be pitch shifted as tensor.
:param semitone_shift: (Optional) Pitch shift in semitone, default to 0.0.
:param mehtod: (Optional) Interpolation method, default to BILINEAR.
:returns: Pitch shifted spectrogram (same shape as spectrogram).
"""
factor = 2 ** (semitone_shift / 12.)
T = tf.shape(spectrogram)[0]
F = tf.shape(spectrogram)[1]
F_ps = tf.cast(tf.cast(F, tf.float32) * factor, tf.int32)[0]
ps_spec = tf.image.resize_images(
spectrogram,
[T, F_ps],
method=method,
align_corners=True)
paddings = [[0, 0], [0, tf.maximum(0, F - F_ps)], [0, 0]]
return tf.pad(ps_spec[:, :F, :], paddings, 'CONSTANT')
示例7: loop_decode
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cast [as 别名]
def loop_decode(self):
# decoder_initial_state: Tuple Tensor (c,h) of size [batch_size x cell.state_size]
# decoder_first_input: Tensor [batch_size x cell.state_size]
# Loop the decoding process and collect results
s,i = self.decoder_initial_state, tf.cast(self.decoder_first_input,tf.float32)
for step in range(self.seq_length):
s, i = self.decode(s,i,step)
# Return to start
self.positions.append(self.first_city)
# Stack visited indices
self.positions=tf.stack(self.positions,axis=1) # [Batch,seq_length+1]
# Sum log_softmax over output steps
self.log_softmax=tf.add_n(self.log_softmax) # [Batch,seq_length]
# Stack attending & pointing distribution
self.attending=tf.stack(self.attending,axis=1) # [Batch,seq_length,seq_length]
self.pointing=tf.stack(self.pointing,axis=1) # [Batch,seq_length,seq_length]
# Return stacked lists of visited_indices and log_softmax for backprop
return self.positions,self.log_softmax
示例8: distorted_inputs
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cast [as 别名]
def distorted_inputs():
"""Construct distorted input for CIFAR training using the Reader ops.
Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
Raises:
ValueError: If no data_dir
"""
if not FLAGS.data_dir:
raise ValueError('Please supply a data_dir')
data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
images, labels = cifar10_input.distorted_inputs(data_dir=data_dir,
batch_size=FLAGS.batch_size)
if FLAGS.use_fp16:
images = tf.cast(images, tf.float16)
labels = tf.cast(labels, tf.float16)
return images, labels
示例9: inputs
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cast [as 别名]
def inputs(eval_data):
"""Construct input for CIFAR evaluation using the Reader ops.
Args:
eval_data: bool, indicating if one should use the train or eval data set.
Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
Raises:
ValueError: If no data_dir
"""
if not FLAGS.data_dir:
raise ValueError('Please supply a data_dir')
data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
images, labels = cifar10_input.inputs(eval_data=eval_data,
data_dir=data_dir,
batch_size=FLAGS.batch_size)
if FLAGS.use_fp16:
images = tf.cast(images, tf.float16)
labels = tf.cast(labels, tf.float16)
return images, labels
示例10: loss
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cast [as 别名]
def loss(logits, labels):
"""Add L2Loss to all the trainable variables.
Add summary for "Loss" and "Loss/avg".
Args:
logits: Logits from inference().
labels: Labels from distorted_inputs or inputs(). 1-D tensor
of shape [batch_size]
Returns:
Loss tensor of type float.
"""
# Calculate the average cross entropy loss across the batch.
labels = tf.cast(labels, tf.int64)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits, name='cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
tf.add_to_collection('losses', cross_entropy_mean)
# The total loss is defined as the cross entropy loss plus all of the weight
# decay terms (L2 loss).
return tf.add_n(tf.get_collection('losses'), name='total_loss')
示例11: char_predictions
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cast [as 别名]
def char_predictions(self, chars_logit):
"""Returns confidence scores (softmax values) for predicted characters.
Args:
chars_logit: chars logits, a tensor with shape
[batch_size x seq_length x num_char_classes]
Returns:
A tuple (ids, log_prob, scores), where:
ids - predicted characters, a int32 tensor with shape
[batch_size x seq_length];
log_prob - a log probability of all characters, a float tensor with
shape [batch_size, seq_length, num_char_classes];
scores - corresponding confidence scores for characters, a float
tensor
with shape [batch_size x seq_length].
"""
log_prob = utils.logits_to_log_prob(chars_logit)
ids = tf.to_int32(tf.argmax(log_prob, dimension=2), name='predicted_chars')
mask = tf.cast(
slim.one_hot_encoding(ids, self._params.num_char_classes), tf.bool)
all_scores = tf.nn.softmax(chars_logit)
selected_scores = tf.boolean_mask(all_scores, mask, name='char_scores')
scores = tf.reshape(selected_scores, shape=(-1, self._params.seq_length))
return ids, log_prob, scores
示例12: compute_first_or_last
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cast [as 别名]
def compute_first_or_last(self, select, first=True):
#perform first ot last operation on row select with probabilistic row selection
answer = tf.zeros_like(select)
running_sum = tf.zeros([self.batch_size, 1], self.data_type)
for i in range(self.max_elements):
if (first):
current = tf.slice(select, [0, i], [self.batch_size, 1])
else:
current = tf.slice(select, [0, self.max_elements - 1 - i],
[self.batch_size, 1])
curr_prob = current * (1 - running_sum)
curr_prob = curr_prob * tf.cast(curr_prob >= 0.0, self.data_type)
running_sum += curr_prob
temp_ans = []
curr_prob = tf.expand_dims(tf.reshape(curr_prob, [self.batch_size]), 0)
for i_ans in range(self.max_elements):
if (not (first) and i_ans == self.max_elements - 1 - i):
temp_ans.append(curr_prob)
elif (first and i_ans == i):
temp_ans.append(curr_prob)
else:
temp_ans.append(tf.zeros_like(curr_prob))
temp_ans = tf.transpose(tf.concat(axis=0, values=temp_ans))
answer += temp_ans
return answer
示例13: batch_of_random_bools
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cast [as 别名]
def batch_of_random_bools(batch_size, n):
"""Return a batch of random "boolean" numbers.
Args:
batch_size: Batch size dimension of returned tensor.
n: number of entries per batch.
Returns:
A [batch_size, n] tensor of "boolean" numbers, where each number is
preresented as -1 or 1.
"""
as_int = tf.random_uniform(
[batch_size, n], minval=0, maxval=2, dtype=tf.int32)
expanded_range = (as_int * 2) - 1
return tf.cast(expanded_range, tf.float32)
示例14: one_hot_encoding
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cast [as 别名]
def one_hot_encoding(labels, num_classes, scope=None):
"""Transform numeric labels into onehot_labels.
Args:
labels: [batch_size] target labels.
num_classes: total number of classes.
scope: Optional scope for name_scope.
Returns:
one hot encoding of the labels.
"""
with tf.name_scope(scope, 'OneHotEncoding', [labels]):
batch_size = labels.get_shape()[0]
indices = tf.expand_dims(tf.range(0, batch_size), 1)
labels = tf.cast(tf.expand_dims(labels, 1), indices.dtype)
concated = tf.concat(axis=1, values=[indices, labels])
onehot_labels = tf.sparse_to_dense(
concated, tf.stack([batch_size, num_classes]), 1.0, 0.0)
onehot_labels.set_shape([batch_size, num_classes])
return onehot_labels
示例15: _reshape_instance_masks
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cast [as 别名]
def _reshape_instance_masks(self, keys_to_tensors):
"""Reshape instance segmentation masks.
The instance segmentation masks are reshaped to [num_instances, height,
width] and cast to boolean type to save memory.
Args:
keys_to_tensors: a dictionary from keys to tensors.
Returns:
A 3-D boolean tensor of shape [num_instances, height, width].
"""
masks = keys_to_tensors['image/segmentation/object']
if isinstance(masks, tf.SparseTensor):
masks = tf.sparse_tensor_to_dense(masks)
height = keys_to_tensors['image/height']
width = keys_to_tensors['image/width']
to_shape = tf.cast(tf.stack([-1, height, width]), tf.int32)
return tf.cast(tf.reshape(masks, to_shape), tf.bool)