本文整理汇总了Python中tensorflow.bfloat16方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.bfloat16方法的具体用法?Python tensorflow.bfloat16怎么用?Python tensorflow.bfloat16使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.bfloat16方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _randomized_roundoff_to_bfloat16
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import bfloat16 [as 别名]
def _randomized_roundoff_to_bfloat16(x, noise, cand1, cand2):
"""Round-off x to cand1 or to cand2 in an unbiased way.
Cand1 and cand2 are the same shape as x.
For every element of x, the corresponding elements of cand1 and cand2 should
be the two closest bfloat16 values to x. Order does not matter.
cand1 and cand2 must differ from each other.
Args:
x: A float32 Tensor.
noise: A Tensor broadcastable to the shape of x containing
random uniform values in [0.0, 1.0].
cand1: A bfloat16 Tensor the same shape as x.
cand2: A bfloat16 Tensor the same shape as x.
Returns:
A bfloat16 Tensor.
"""
cand1_f = tf.to_float(cand1)
cand2_f = tf.to_float(cand2)
step_size = cand2_f - cand1_f
fpart = (x - cand1_f) / step_size
ret = tf.where(tf.greater(fpart, noise), cand2, cand1)
return ret
示例2: _to_bfloat16_unbiased
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import bfloat16 [as 别名]
def _to_bfloat16_unbiased(x, noise):
"""Convert a float32 to a bfloat16 using randomized roundoff.
Args:
x: A float32 Tensor.
noise: a float32 Tensor with values in [0, 1), broadcastable to tf.shape(x)
Returns:
A float32 Tensor.
"""
x_sign = tf.sign(x)
# Make sure x is positive. If it is zero, the two candidates are identical.
x = x * x_sign + 1e-30
cand1 = tf.to_bfloat16(x)
cand1_f = tf.to_float(cand1)
# This relies on the fact that for a positive bfloat16 b,
# b * 1.005 gives you the next higher bfloat16 and b*0.995 gives you the
# next lower one. Both 1.005 and 0.995 are ballpark estimation.
cand2 = tf.to_bfloat16(
tf.where(tf.greater(x, cand1_f), cand1_f * 1.005, cand1_f * 0.995))
ret = _randomized_roundoff_to_bfloat16(x, noise, cand1, cand2)
return ret * tf.to_bfloat16(x_sign)
示例3: custom_getter
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import bfloat16 [as 别名]
def custom_getter(self, activation_dtype=tf.bfloat16):
"""A custom getter that uses the encoding for bfloat16 and float32 vars.
When a bfloat16 or float32 variable is requsted, an encoded float16
varaible is created, which is then decoded and cast to a bfloat16
activation.
Args:
activation_dtype: a dtype to which to convert the decoded value.
Returns:
a function.
"""
def getter_fn(getter, *args, **kwargs):
requested_dtype = kwargs["dtype"]
if requested_dtype in (tf.bfloat16, tf.float32):
kwargs["dtype"] = tf.bfloat16
kwargs["initializer"] = _EncodingInitializer(
kwargs["initializer"], self)
ret = self._decode_with_identity_gradient(getter(*args, **kwargs))
return tf.cast(ret, activation_dtype)
return getter(*args, **kwargs)
return getter_fn
示例4: dataset_parser
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import bfloat16 [as 别名]
def dataset_parser(value):
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string, ''),
'image/format': tf.FixedLenFeature((), tf.string, 'jpeg'),
'image/class/label': tf.FixedLenFeature([], tf.int64, -1)
}
parsed = tf.parse_single_example(value, keys_to_features)
image_bytes = tf.reshape(parsed['image/encoded'], shape=[])
# Preprocess the images.
image = tf.image.decode_jpeg(image_bytes)
image = tf.image.random_flip_left_right(image)
image = tf.image.resize_images(image, [IMAGE_SIZE, IMAGE_SIZE])
image = tf.image.convert_image_dtype(
image, dtype=tf.bfloat16)
# Subtract one so that labels are in [0, 1000).
label = tf.cast(
tf.reshape(parsed['image/class/label'], shape=[]), dtype=tf.int32) - 1
return image, label
示例5: _custom_getter
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import bfloat16 [as 别名]
def _custom_getter(self):
if self.hparams.weight_dtype == "bfloat16":
if self.hparams.optimizer != "Adafactor":
raise NotImplementedError(
"weight_dtype=bfloat16 only implemented with Adafactor optimizer")
activation_dtype = tf.float32
if self.hparams.activation_dtype == "bfloat16":
activation_dtype = tf.bfloat16
return quantization.EighthPowerEncoding().custom_getter(
activation_dtype=activation_dtype)
elif self.hparams.activation_dtype == "bfloat16":
return quantization.bfloat16_activations_var_getter
elif mixed_precision_is_enabled(hparams=self.hparams):
return quantization.float16_activations_var_getter
else:
return None
示例6: bfloat16_activations_var_getter
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import bfloat16 [as 别名]
def bfloat16_activations_var_getter(getter, *args, **kwargs):
"""A custom getter function for float32 parameters and bfloat16 activations.
Args:
getter: custom getter
*args: arguments
**kwargs: keyword arguments
Returns:
variables with the correct dtype.
Raises:
KeyError: if "dtype" is not provided as a kwarg.
"""
requested_dtype = kwargs["dtype"]
if requested_dtype == tf.bfloat16:
kwargs["dtype"] = tf.float32
var = getter(*args, **kwargs)
# This if statement is needed to guard the cast, because batch norm
# assigns directly to the return value of this custom getter. The cast
# makes the return value not a variable so it cannot be assigned. Batch
# norm variables are always in fp32 so this if statement is never
# triggered for them.
if var.dtype.base_dtype != requested_dtype:
var = tf.cast(var, requested_dtype)
return var
示例7: preprocess_for_train
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import bfloat16 [as 别名]
def preprocess_for_train(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'):
"""Preprocesses the given image for evaluation.
Args:
image_bytes: `Tensor` representing an image binary of arbitrary size.
use_bfloat16: `bool` for whether to use bfloat16.
image_size: image size.
interpolation: image interpolation method
Returns:
A preprocessed image `Tensor`.
"""
resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR
image = _decode_and_random_crop(image_bytes, image_size, resize_method)
image = _flip(image)
image = tf.reshape(image, [image_size, image_size, 3])
image = tf.image.convert_image_dtype(
image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32)
return image
示例8: preprocess_for_eval
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import bfloat16 [as 别名]
def preprocess_for_eval(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'):
"""Preprocesses the given image for evaluation.
Args:
image_bytes: `Tensor` representing an image binary of arbitrary size.
use_bfloat16: `bool` for whether to use bfloat16.
image_size: image size.
interpolation: image interpolation method
Returns:
A preprocessed image `Tensor`.
"""
resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR
image = _decode_and_center_crop(image_bytes, image_size, resize_method)
image = tf.reshape(image, [image_size, image_size, 3])
image = tf.image.convert_image_dtype(
image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32)
return image
示例9: preprocess_image
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import bfloat16 [as 别名]
def preprocess_image(image_bytes,
is_training=False,
use_bfloat16=False,
image_size=IMAGE_SIZE,
interpolation='bicubic'):
"""Preprocesses the given image.
Args:
image_bytes: `Tensor` representing an image binary of arbitrary size.
is_training: `bool` for whether the preprocessing is for training.
use_bfloat16: `bool` for whether to use bfloat16.
image_size: image size.
interpolation: image interpolation method
Returns:
A preprocessed image `Tensor` with value range of [0, 255].
"""
if is_training:
return preprocess_for_train(image_bytes, use_bfloat16, image_size, interpolation)
else:
return preprocess_for_eval(image_bytes, use_bfloat16, image_size, interpolation)
示例10: __call__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import bfloat16 [as 别名]
def __call__(self, x, *args, **kwargs):
# Preprocessing: apply layer normalization
#casting back to float32
x = tf.cast(x, tf.bfloat16)
y = self.layer_norm(x)
#y = tf.cast(y, tf.float32)
# Get layer output
y = self.layer(y, *args, **kwargs)
# Postprocessing: apply dropout and residual connection
if self.train:
mlperf_log.transformer_print(
key=mlperf_log.MODEL_HP_LAYER_POSTPROCESS_DROPOUT,
value=self.postprocess_dropout)
y = tf.nn.dropout(y, 1 - (1 - self.postprocess_dropout))
return x + y
示例11: linear
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import bfloat16 [as 别名]
def linear(self, x):
"""Computes logits by running x through a linear layer.
Args:
x: A float32 tensor with shape [batch_size, length, hidden_size]
Returns:
float32 tensor with shape [batch_size, length, vocab_size].
"""
#with tf.compat.v1.tpu.bfloat16_scope():
with tf.compat.v1.name_scope("presoftmax_linear"):
#x = tf.cast(x, tf.bfloat16)
batch_size = tf.shape(input=x)[0]
length = tf.shape(input=x)[1]
x = tf.reshape(x, [-1, self.hidden_size])
logits = tf.matmul(x, self.shared_weights, transpose_b=True)
#logits = tf.cast(logits, tf.float32)
return tf.reshape(logits, [batch_size, length, self.vocab_size])
示例12: preprocess_for_train
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import bfloat16 [as 别名]
def preprocess_for_train(image_bytes, use_bfloat16, image_size=IMAGE_SIZE):
"""Preprocesses the given image for evaluation.
Args:
image_bytes: `Tensor` representing an image binary of arbitrary size.
use_bfloat16: `bool` for whether to use bfloat16.
image_size: image size.
Returns:
A preprocessed image `Tensor`.
"""
image = _decode_and_random_crop(image_bytes, image_size)
image = _flip(image)
image = tf.reshape(image, [image_size, image_size, 3])
image = tf.image.convert_image_dtype(
image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32)
return image
示例13: preprocess_for_eval
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import bfloat16 [as 别名]
def preprocess_for_eval(image_bytes, use_bfloat16, image_size=IMAGE_SIZE):
"""Preprocesses the given image for evaluation.
Args:
image_bytes: `Tensor` representing an image binary of arbitrary size.
use_bfloat16: `bool` for whether to use bfloat16.
image_size: image size.
Returns:
A preprocessed image `Tensor`.
"""
image = _decode_and_center_crop(image_bytes, image_size)
image = tf.reshape(image, [image_size, image_size, 3])
image = tf.image.convert_image_dtype(
image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32)
return image
示例14: _custom_getter
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import bfloat16 [as 别名]
def _custom_getter(self):
if self.hparams.weight_dtype == "bfloat16":
if self.hparams.optimizer != "Adafactor":
raise NotImplementedError(
"weight_dtype=bfloat16 only implemented with Adafactor optimizer")
return quantization.EighthPowerEncoding().custom_getter(
activation_dtype=tf.bfloat16
if self.hparams.activation_dtype == "bfloat16" else tf.float32)
elif self.hparams.activation_dtype == "bfloat16":
return quantization.bfloat16_activations_var_getter
else:
return None
示例15: model_fn
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import bfloat16 [as 别名]
def model_fn(self, features):
with tf.variable_scope(tf.get_variable_scope(), use_resource=True):
transformed_features = self.bottom(features)
if self.hparams.activation_dtype == "bfloat16":
for k, v in sorted(six.iteritems(transformed_features)):
if v.dtype == tf.float32:
transformed_features[k] = tf.cast(v, tf.bfloat16)
with tf.variable_scope("body"):
log_info("Building model body")
body_out = self.body(transformed_features)
output, losses = self._normalize_body_output(body_out)
if "training" in losses:
log_info("Skipping T2TModel top and loss because training loss "
"returned from body")
logits = output
else:
logits = self.top(output, features)
losses["training"] = 0.0
if (self._hparams.mode != tf.estimator.ModeKeys.PREDICT and
self._hparams.mode != "attack"):
losses["training"] = self.loss(logits, features)
return logits, losses