当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.atan2方法代码示例

本文整理汇总了Python中tensorflow.atan2方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.atan2方法的具体用法?Python tensorflow.atan2怎么用?Python tensorflow.atan2使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.atan2方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: mat2euler

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def mat2euler(rot):
    r00 = tf.slice(rot, [0, 0, 0], [-1, 1, 1])
    r01 = tf.slice(rot, [0, 0, 1], [-1, 1, 1])
    r02 = tf.slice(rot, [0, 0, 2], [-1, 1, 1])
    r10 = tf.slice(rot, [0, 1, 0], [-1, 1, 1])
    r11 = tf.slice(rot, [0, 1, 1], [-1, 1, 1])
    r12 = tf.slice(rot, [0, 1, 2], [-1, 1, 1])
    r22 = tf.slice(rot, [0, 2, 2], [-1, 1, 1])
    cy = tf.sqrt(r22*r22 + r12 * r12)

    def f1():
        z = tf.atan2(-r01, r00)    
        y = tf.atan2(r02, cy)
        x = tf.atan2(-r12, r22)
        return tf.concat([z,y,x], axis=1)

    def f2():
        z = tf.atan2(r10, r11)
        y = tf.atan2(r02, cy)
        x = tf.zeros_like(y)
        return tf.concat([z,y,x], axis=1)
    
    x1 = f1()
    x2 = f2()
    return tf.where(tf.squeeze(tf.less(cy, 1e-6), axis=[1,2]), x2, x1) 
开发者ID:hlzz,项目名称:DeepMatchVO,代码行数:27,代码来源:geo_utils.py

示例2: flow_to_rgb

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def flow_to_rgb(flows):
    """The last axis should have dimension 2, for x and y values."""

    def cartesian_to_polar(x, y):
        magnitude = tf.sqrt(tf.square(x) + tf.square(y))
        angle = tf.atan2(y, x)
        return magnitude, angle

    mag, ang = cartesian_to_polar(*tf.unstack(flows, axis=-1))
    ang_normalized = (ang + np.pi) / (2 * np.pi)
    mag_min = tf.reduce_min(mag)
    mag_max = tf.reduce_max(mag)
    mag_normalized = (mag - mag_min) / (mag_max - mag_min)
    hsv = tf.stack([ang_normalized, tf.ones_like(ang), mag_normalized], axis=-1)
    rgb = tf.image.hsv_to_rgb(hsv)
    return rgb 
开发者ID:alexlee-gk,项目名称:video_prediction,代码行数:18,代码来源:tf_utils.py

示例3: flow_to_color

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def flow_to_color(flow, mask=None, max_flow=None):
    """Converts flow to 3-channel color image.

    Args:
        flow: tensor of shape [num_batch, height, width, 2].
        mask: flow validity mask of shape [num_batch, height, width, 1].
    """
    n = 8
    num_batch, height, width, _ = tf.unstack(tf.shape(flow))
    mask = tf.ones([num_batch, height, width, 1]) if mask is None else mask
    flow_u, flow_v = tf.unstack(flow, axis=3)
    if max_flow is not None:
        max_flow = tf.maximum(tf.to_float(max_flow), 1.)
    else:
        max_flow = tf.reduce_max(tf.abs(flow * mask))
    mag = tf.sqrt(tf.reduce_sum(tf.square(flow), 3))
    angle = tf.atan2(flow_v, flow_u)

    im_h = tf.mod(angle / (2 * np.pi) + 1.0, 1.0)
    im_s = tf.clip_by_value(mag * n / max_flow, 0, 1)
    im_v = tf.clip_by_value(n - im_s, 0, 1)
    im_hsv = tf.stack([im_h, im_s, im_v], 3)
    im = tf.image.hsv_to_rgb(im_hsv)
    return im * mask 
开发者ID:ppliuboy,项目名称:SelFlow,代码行数:26,代码来源:flowlib.py

示例4: viz_flow

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def viz_flow(flow):
  """Visualize optical flow in TF"""
  from VSR.Util.VisualizeOpticalFlow import _color_wheel
  with tf.name_scope('VizFlow'):
    color_wheel = _color_wheel().astype('float32')
    n_cols = color_wheel.shape[0]
    u, v = flow[..., 0], flow[..., 1]
    rot = tf.atan2(-v, -u) / np.pi
    fk = (rot + 1) / 2 * (n_cols - 1)  # -1~1 mapped to 0~n_cols
    k0 = tf.to_int32(fk)  # 0, 1, 2, ..., n_cols
    k1 = tf.mod(k0 + 1, n_cols)
    f = fk - tf.to_float(k0)
    f = tf.expand_dims(f, -1)
    col0 = tf.gather_nd(color_wheel, tf.expand_dims(k0, -1))
    col1 = tf.gather_nd(color_wheel, tf.expand_dims(k1, -1))
    col = (1 - f) * col0 + f * col1
  return col 
开发者ID:LoSealL,项目名称:VideoSuperResolution,代码行数:19,代码来源:Motion.py

示例5: reduce_mean_angle

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def reduce_mean_angle(weights, angles, use_complex=False, name=None):
    """ Computes the weighted mean of angles. Accepts option to compute use complex exponentials or real numbers.

        Complex number-based version is giving wrong gradients for some reason, but forward calculation is fine.

        See https://en.wikipedia.org/wiki/Mean_of_circular_quantities

    Args:
        weights: [BATCH_SIZE, NUM_ANGLES]
        angles:  [NUM_ANGLES, NUM_DIHEDRALS]

    Returns:
                 [BATCH_SIZE, NUM_DIHEDRALS]

    """

    with tf.name_scope(name, 'reduce_mean_angle', [weights, angles]) as scope:
        weights = tf.convert_to_tensor(weights, name='weights')
        angles  = tf.convert_to_tensor(angles,  name='angles')

        if use_complex:
            # use complexed-valued exponentials for calculation
            cwts =        tf.complex(weights, 0.) # cast to complex numbers
            exps = tf.exp(tf.complex(0., angles)) # convert to point on complex plane

            unit_coords = tf.matmul(cwts, exps) # take the weighted mixture of the unit circle coordinates

            return tf.angle(unit_coords, name=scope) # return angle of averaged coordinate

        else:
            # use real-numbered pairs of values
            sins = tf.sin(angles)
            coss = tf.cos(angles)

            y_coords = tf.matmul(weights, sins)
            x_coords = tf.matmul(weights, coss)

            return tf.atan2(y_coords, x_coords, name=scope) 
开发者ID:aqlaboratory,项目名称:rgn,代码行数:40,代码来源:geom_ops.py

示例6: cartesian_to_spherical_coordinates

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def cartesian_to_spherical_coordinates(point_cartesian, eps=None, name=None):
  """Function to transform Cartesian coordinates to spherical coordinates.

  This function assumes a right handed coordinate system with `z` pointing up.
  When `x` and `y` are both `0`, the function outputs `0` for `phi`. Note that
  the function is not smooth when `x = y = 0`.

  Note:
    In the following, A1 to An are optional batch dimensions.

  Args:
    point_cartesian: A tensor of shape `[A1, ..., An, 3]`. In the last
      dimension, the data follows the `x`, `y`, `z` order.
    eps: A small `float`, to be added to the denominator. If left as `None`,
      its value is automatically selected using `point_cartesian.dtype`.
    name: A name for this op. Defaults to `cartesian_to_spherical_coordinates`.

  Returns:
    A tensor of shape `[A1, ..., An, 3]`. The last dimensions contains
    (`r`,`theta`,`phi`), where `r` is the sphere radius, `theta` is the polar
    angle and `phi` is the azimuthal angle.
  """
  with tf.compat.v1.name_scope(name, "cartesian_to_spherical_coordinates",
                               [point_cartesian]):
    point_cartesian = tf.convert_to_tensor(value=point_cartesian)

    shape.check_static(
        tensor=point_cartesian,
        tensor_name="point_cartesian",
        has_dim_equals=(-1, 3))

    x, y, z = tf.unstack(point_cartesian, axis=-1)
    radius = tf.norm(tensor=point_cartesian, axis=-1)
    theta = tf.acos(safe_ops.safe_unsigned_div(z, radius, eps))
    phi = tf.atan2(y, x)
    return tf.stack((radius, theta, phi), axis=-1) 
开发者ID:tensorflow,项目名称:graphics,代码行数:38,代码来源:math_helpers.py

示例7: from_quaternion

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def from_quaternion(quaternion, name=None):
  """Converts a quaternion to an axis-angle representation.

  Note:
    In the following, A1 to An are optional batch dimensions.

  Args:
    quaternion: A tensor of shape `[A1, ..., An, 4]`, where the last dimension
      represents a normalized quaternion.
    name: A name for this op that defaults to "axis_angle_from_quaternion".

  Returns:
    Tuple of two tensors of shape `[A1, ..., An, 3]` and `[A1, ..., An, 1]`,
    where the first tensor represents the axis, and the second represents the
    angle. The resulting axis is a normalized vector.

  Raises:
    ValueError: If the shape of `quaternion` is not supported.
  """
  with tf.compat.v1.name_scope(name, "axis_angle_from_quaternion",
                               [quaternion]):
    quaternion = tf.convert_to_tensor(value=quaternion)

    shape.check_static(
        tensor=quaternion, tensor_name="quaternion", has_dim_equals=(-1, 4))
    quaternion = asserts.assert_normalized(quaternion)

    # This prevents zero norm xyz and zero w, and is differentiable.
    quaternion += asserts.select_eps_for_addition(quaternion.dtype)
    xyz, w = tf.split(quaternion, (3, 1), axis=-1)
    norm = tf.norm(tensor=xyz, axis=-1, keepdims=True)
    angle = 2.0 * tf.atan2(norm, tf.abs(w))
    axis = safe_ops.safe_unsigned_div(safe_ops.nonzero_sign(w) * xyz, norm)
    return axis, angle 
开发者ID:tensorflow,项目名称:graphics,代码行数:36,代码来源:axis_angle.py

示例8: tf_angle_vector_to_orientation

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def tf_angle_vector_to_orientation(angle_vectors_tensor):
    """ Converts angle unit vectors into orientation angle representation.
        e.g. [0.717, 0.717] -> 45, [0, 1] -> 90

    Args:
        angle_vectors_tensor: a tensor of shape (N, 2) of angle unit vectors
            in the format [x, y]

    Returns:
        A tensor of shape (N,) of orientation angles
    """
    x = angle_vectors_tensor[:, 0]
    y = angle_vectors_tensor[:, 1]

    return tf.atan2(y, x) 
开发者ID:kujason,项目名称:avod,代码行数:17,代码来源:orientation_encoder.py

示例9: visualize_degree_map

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def visualize_degree_map(ori_maps, name='degree_maps'):
    # ori_maps [B,H,W,2] tf.float32, cos,sin
    with tf.name_scope(name):
        cos_maps = tf.slice(ori_maps, [0,0,0,0], [-1,-1,-1,1])
        sin_maps = tf.slice(ori_maps, [0,0,0,1], [-1,-1,-1,1])
        atan_maps = tf.atan2(sin_maps, cos_maps)
        angle2rgb = tf.constant(get_angle_colorbar())
        degree_maps = tf.cast(tf.clip_by_value(atan_maps*180/np.pi+180, 0, 360), tf.int32) 
        degree_maps = tf.gather(angle2rgb, degree_maps[...,0])
        return degree_maps 
开发者ID:luigifreda,项目名称:pyslam,代码行数:12,代码来源:inference.py

示例10: compute_inputs

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def compute_inputs(x, freqs, n_fft, n_frames, input_features, norm=False):
    if norm:
        norm_fn = instance_norm
    else:
        def norm_fn(x):
            return x
    freqs_tf = tf.constant(freqs, name="freqs", dtype='float32')
    inputs = {}
    with tf.variable_scope('real'):
        inputs['real'] = norm_fn(tf.reshape(
            tf.matmul(x, tf.cos(freqs_tf)), [1, 1, n_frames, n_fft // 2]))
    with tf.variable_scope('imag'):
        inputs['imag'] = norm_fn(tf.reshape(
            tf.matmul(x, tf.sin(freqs_tf)), [1, 1, n_frames, n_fft // 2]))
    with tf.variable_scope('mags'):
        inputs['mags'] = norm_fn(tf.reshape(
            tf.sqrt(
                tf.maximum(1e-15, inputs['real'] * inputs['real'] + inputs[
                    'imag'] * inputs['imag'])), [1, 1, n_frames, n_fft // 2]))
    with tf.variable_scope('phase'):
        inputs['phase'] = norm_fn(tf.atan2(inputs['imag'], inputs['real']))
    with tf.variable_scope('unwrapped'):
        inputs['unwrapped'] = tf.py_func(
            unwrap, [inputs['phase']], tf.float32)
    with tf.variable_scope('unwrapped_difference'):
        inputs['unwrapped_difference'] = (tf.slice(
                inputs['unwrapped'],
                [0, 0, 0, 1], [-1, -1, -1, n_fft // 2 - 1]) -
            tf.slice(
                inputs['unwrapped'],
                [0, 0, 0, 0], [-1, -1, -1, n_fft // 2 - 1]))
    if 'unwrapped_difference' in input_features:
        for k, v in input_features:
            if k is not 'unwrapped_difference':
                inputs[k] = tf.slice(
                        v, [0, 0, 0, 0], [-1, -1, -1, n_fft // 2 - 1])
    net = tf.concat([inputs[i] for i in input_features], 1)
    return inputs, net 
开发者ID:pkmital,项目名称:time-domain-neural-audio-style-transfer,代码行数:40,代码来源:timedomain.py

示例11: angle

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def angle(z):
  # from https://github.com/tensorflow/tensorflow/issues/483
  """
  Returns the elementwise arctan of z, choosing the quadrant correctly.

  Quadrant I: arctan(y/x)
  Qaudrant II: \pi + arctan(y/x) (phase of x<0, y=0 is \pi)
  Quadrant III: -\pi + arctan(y/x)
  Quadrant IV: arctan(y/x)

  Inputs:
      z: tf.complex64 or tf.complex128 tensor
  Retunrs:
      Angle of z
  """
  return tf.atan2(tf.imag(z), tf.real(z))
  # if z.dtype == tf.complex128:
  #     dtype = tf.float64
  # else:
  #     dtype = tf.float32
  # x = tf.real(z)
  # y = tf.imag(z)
  # xneg = tf.cast(x < 0.0, dtype)
  # yneg = tf.cast(y < 0.0, dtype)
  # ypos = tf.cast(y >= 0.0, dtype)

  # offset = xneg * (ypos - yneg) * np.pi

  # return tf.atan(y / x) + offset 
开发者ID:andrewowens,项目名称:multisensory,代码行数:31,代码来源:tfutil.py

示例12: get_degree_maps

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def get_degree_maps(ori_maps):
    # ori_maps : [B,H,W,2], consist of cos, sin response
    cos_maps = tf.slice(ori_maps, [0,0,0,0], [-1,-1,-1,1])
    sin_maps = tf.slice(ori_maps, [0,0,0,1], [-1,-1,-1,1])
    atan_maps = tf.atan2(sin_maps, cos_maps)
    angle2rgb = tf.constant(get_angle_colorbar())
    degree_maps = tf.cast(tf.clip_by_value(atan_maps*180/np.pi+180, 0, 360), tf.int32)
    degree_maps = tf.gather(angle2rgb, degree_maps[...,0])
    return degree_maps, atan_maps

# def inverse_warp_view_1_to_2(photos1, depths1, depths2, c1Tc2s, intrinsics_3x3, thetas1=None, thetas2=None, depth_thresh=0.5):
#     if thetas1 is not None:
#         # inverse in-plane transformation
#         photo_depths1 = tf.concat([photos1, depths1], axis=-1)
#         inwarp_photo_depths1, _ = inplane_inverse_warp(photo_depths1, thetas1)
#         photos1 = tf.slice(inwarp_photo_depths1, [0,0,0,0],[-1,-1,-1,1])
#         depths1 = tf.slice(inwarp_photo_depths1, [0,0,0,1],[-1,-1,-1,1])
#     # projective inverse transformation
#     photos2w, visible_masks2 = projective_inverse_warp(photos1, depths2, c1Tc2s,
#                                                     intrinsics_3x3, depths1, depth_thresh)
#     projective_visible_masks2 = tf.identity(visible_masks2)
#     if thetas2 is not None:
#         # inverse in-plane transformation
#         photo_masks2 = tf.concat([photos2w, visible_masks2], axis=-1)
#         inwarp_photo_masks2, _ = inplane_inverse_warp(photo_masks2, thetas2)
#         photos2w = tf.slice(inwarp_photo_masks2, [0,0,0,0], [-1,-1,-1,1])
#         visible_masks2 = tf.slice(inwarp_photo_masks2, [0,0,0,1], [-1,-1,-1,1])
#     visible_masks2 = tf.cast(tf.greater(visible_masks2, 0.5), tf.float32)
#     return photos2w, visible_masks2, projective_visible_masks2 
开发者ID:ethz-asl,项目名称:hfnet,代码行数:31,代码来源:det_tools.py

示例13: test_forward_atan2

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def test_forward_atan2():
    """test operator tan """
    tf.disable_eager_execution()
    np_data_1 = np.random.uniform(1, 100, size=(2, 3, 5)).astype(np.float32)
    np_data_2 = np.random.uniform(1, 100, size=(2, 3, 5)).astype(np.float32)
    tf.reset_default_graph()
    in_data_1 = tf.placeholder(tf.float32, (2, 3, 5), name="in_data_1")
    in_data_2 = tf.placeholder(tf.float32, (2, 3, 5), name="in_data_2")
    tf.atan2(in_data_1, in_data_2, name="atan2")
    compare_tf_with_tvm([np_data_1, np_data_2], ['in_data_1:0', 'in_data_2:0'], 'atan2:0') 
开发者ID:apache,项目名称:incubator-tvm,代码行数:12,代码来源:test_forward.py

示例14: quaternion2euler_full_tf

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def quaternion2euler_full_tf(q, rotseq="yzy"):
    def twoaxisrot_tf(r11, r12, r21, r31, r32):
        a0 = tf.atan2(r11, r12)
        a1 = tf.acos(r21)
        a2 = tf.atan2(r31, r32)
        return tf.stack([a0, a1, a2], axis=-1)

    def threeaxisrot_tf(r11, r12, r21, r31, r32):
        a0 = tf.atan2(r31, r32)
        a1 = tf.asin(tf.clip_by_value(r21, -1.0, 1.0))
        a2 = tf.atan2(r11, r12)
        return tf.stack([a0, a1, a2], axis=-1)

    q_norm = tf.expand_dims(tf.norm(q, axis=-1), axis=-1)
    q /= q_norm

    if rotseq == "yzy":
        angles = twoaxisrot_tf(2 * (q[:, 2] * q[:, 3] + q[:, 0] * q[:, 1]),
                               -2 * (q[:, 1] * q[:, 2] - q[:, 0] * q[:, 3]),
                               q[:, 0] * q[:, 0] - q[:, 1] * q[:, 1] + q[:, 2] * q[:, 2] - q[:, 3] * q[:, 3],
                               2 * (q[:, 2] * q[:, 3] - q[:, 0] * q[:, 1]),
                               2 * (q[:, 1] * q[:, 2] + q[:, 0] * q[:, 3]))
        yaw = angles[:, 2]
        pitch = angles[:, 1]
    elif rotseq == "xzy":
        angles = threeaxisrot_tf(2 * (q[:, 2] * q[:, 3] + q[:, 0] * q[:, 1]),
                                 q[:, 0] * q[:, 0] - q[:, 1] * q[:, 1] + q[:, 2] * q[:, 2] - q[:, 3] * q[:, 3],
                                 -2 * (q[:, 1] * q[:, 2] - q[:, 0] * q[:, 3]),
                                 2 * (q[:, 1] * q[:, 3] + q[:, 0] * q[:, 2]),
                                 q[:, 0] * q[:, 0] + q[:, 1] * q[:, 1] - q[:, 2] * q[:, 2] - q[:, 3] * q[:, 3])
        yaw = angles[:, 0]
        pitch = angles[:, 1]
    elif rotseq == "zxy":
        angles = threeaxisrot_tf(-2 * (q[:, 1] * q[:, 2] - q[:, 0] * q[:, 3]),
                                 q[:, 0] * q[:, 0] - q[:, 1] * q[:, 1] + q[:, 2] * q[:, 2] - q[:, 3] * q[:, 3],
                                 2 * (q[:, 2] * q[:, 3] + q[:, 0] * q[:, 1]),
                                 -2 * (q[:, 1] * q[:, 3] - q[:, 0] * q[:, 2]),
                                 q[:, 0] * q[:, 0] - q[:, 1] * q[:, 1] - q[:, 2] * q[:, 2] + q[:, 3] * q[:, 3])
        yaw = angles[:, 0]
        pitch = angles[:, 2]

    return yaw, pitch 
开发者ID:eldar,项目名称:differentiable-point-clouds,代码行数:44,代码来源:euler.py

示例15: build_networks

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def build_networks(lfnet_config, photo, is_training):
    # Detector 
    DET = importlib.import_module(lfnet_config.detector)
    detector = DET.Model(lfnet_config, is_training)

    if lfnet_config.input_inst_norm:
        print('Apply instance norm on input photos')
        photos1 = instance_normalization(photo)

    heatmaps, det_endpoints = build_detector_helper(lfnet_config, detector, photo)

    # extract patches
    kpts = det_endpoints['kpts']
    batch_inds = det_endpoints['batch_inds']

    kp_patches = build_patch_extraction(lfnet_config, det_endpoints, photo)

    # Descriptor
    DESC = importlib.import_module(lfnet_config.descriptor)
    descriptor = DESC.Model(lfnet_config, is_training)
    desc_feats, desc_endpoints = descriptor.build_model(kp_patches, reuse=False) # [B*K,D]

    # scale and orientation (extra)
    scale_maps = det_endpoints['scale_maps']
    ori_maps = det_endpoints['ori_maps'] # cos/sin
    degree_maps, _ = get_degree_maps(ori_maps) # degree (rgb psuedo color code)
    kpts_scale = det_endpoints['kpts_scale'] # scale factor 
    kpts_ori = det_endpoints['kpts_ori']
    kpts_ori = tf.atan2(kpts_ori[:,1], kpts_ori[:,0]) # radian

    ops = {
        'photo': photo,
        'is_training': is_training,
        'kpts': kpts,
        'feats': desc_feats,
        # EXTRA
        'scale_maps': scale_maps,
        'kpts_scale': kpts_scale,
        'degree_maps': degree_maps,
        'kpts_ori': kpts_ori,
        'heatmaps': heatmaps, 
    }
    return ops 
开发者ID:luigifreda,项目名称:pyslam,代码行数:45,代码来源:feature_lfnet.py


注:本文中的tensorflow.atan2方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。