本文整理汇总了Python中tensorflow.atan2方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.atan2方法的具体用法?Python tensorflow.atan2怎么用?Python tensorflow.atan2使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.atan2方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: mat2euler
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def mat2euler(rot):
r00 = tf.slice(rot, [0, 0, 0], [-1, 1, 1])
r01 = tf.slice(rot, [0, 0, 1], [-1, 1, 1])
r02 = tf.slice(rot, [0, 0, 2], [-1, 1, 1])
r10 = tf.slice(rot, [0, 1, 0], [-1, 1, 1])
r11 = tf.slice(rot, [0, 1, 1], [-1, 1, 1])
r12 = tf.slice(rot, [0, 1, 2], [-1, 1, 1])
r22 = tf.slice(rot, [0, 2, 2], [-1, 1, 1])
cy = tf.sqrt(r22*r22 + r12 * r12)
def f1():
z = tf.atan2(-r01, r00)
y = tf.atan2(r02, cy)
x = tf.atan2(-r12, r22)
return tf.concat([z,y,x], axis=1)
def f2():
z = tf.atan2(r10, r11)
y = tf.atan2(r02, cy)
x = tf.zeros_like(y)
return tf.concat([z,y,x], axis=1)
x1 = f1()
x2 = f2()
return tf.where(tf.squeeze(tf.less(cy, 1e-6), axis=[1,2]), x2, x1)
示例2: flow_to_rgb
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def flow_to_rgb(flows):
"""The last axis should have dimension 2, for x and y values."""
def cartesian_to_polar(x, y):
magnitude = tf.sqrt(tf.square(x) + tf.square(y))
angle = tf.atan2(y, x)
return magnitude, angle
mag, ang = cartesian_to_polar(*tf.unstack(flows, axis=-1))
ang_normalized = (ang + np.pi) / (2 * np.pi)
mag_min = tf.reduce_min(mag)
mag_max = tf.reduce_max(mag)
mag_normalized = (mag - mag_min) / (mag_max - mag_min)
hsv = tf.stack([ang_normalized, tf.ones_like(ang), mag_normalized], axis=-1)
rgb = tf.image.hsv_to_rgb(hsv)
return rgb
示例3: flow_to_color
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def flow_to_color(flow, mask=None, max_flow=None):
"""Converts flow to 3-channel color image.
Args:
flow: tensor of shape [num_batch, height, width, 2].
mask: flow validity mask of shape [num_batch, height, width, 1].
"""
n = 8
num_batch, height, width, _ = tf.unstack(tf.shape(flow))
mask = tf.ones([num_batch, height, width, 1]) if mask is None else mask
flow_u, flow_v = tf.unstack(flow, axis=3)
if max_flow is not None:
max_flow = tf.maximum(tf.to_float(max_flow), 1.)
else:
max_flow = tf.reduce_max(tf.abs(flow * mask))
mag = tf.sqrt(tf.reduce_sum(tf.square(flow), 3))
angle = tf.atan2(flow_v, flow_u)
im_h = tf.mod(angle / (2 * np.pi) + 1.0, 1.0)
im_s = tf.clip_by_value(mag * n / max_flow, 0, 1)
im_v = tf.clip_by_value(n - im_s, 0, 1)
im_hsv = tf.stack([im_h, im_s, im_v], 3)
im = tf.image.hsv_to_rgb(im_hsv)
return im * mask
示例4: viz_flow
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def viz_flow(flow):
"""Visualize optical flow in TF"""
from VSR.Util.VisualizeOpticalFlow import _color_wheel
with tf.name_scope('VizFlow'):
color_wheel = _color_wheel().astype('float32')
n_cols = color_wheel.shape[0]
u, v = flow[..., 0], flow[..., 1]
rot = tf.atan2(-v, -u) / np.pi
fk = (rot + 1) / 2 * (n_cols - 1) # -1~1 mapped to 0~n_cols
k0 = tf.to_int32(fk) # 0, 1, 2, ..., n_cols
k1 = tf.mod(k0 + 1, n_cols)
f = fk - tf.to_float(k0)
f = tf.expand_dims(f, -1)
col0 = tf.gather_nd(color_wheel, tf.expand_dims(k0, -1))
col1 = tf.gather_nd(color_wheel, tf.expand_dims(k1, -1))
col = (1 - f) * col0 + f * col1
return col
示例5: reduce_mean_angle
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def reduce_mean_angle(weights, angles, use_complex=False, name=None):
""" Computes the weighted mean of angles. Accepts option to compute use complex exponentials or real numbers.
Complex number-based version is giving wrong gradients for some reason, but forward calculation is fine.
See https://en.wikipedia.org/wiki/Mean_of_circular_quantities
Args:
weights: [BATCH_SIZE, NUM_ANGLES]
angles: [NUM_ANGLES, NUM_DIHEDRALS]
Returns:
[BATCH_SIZE, NUM_DIHEDRALS]
"""
with tf.name_scope(name, 'reduce_mean_angle', [weights, angles]) as scope:
weights = tf.convert_to_tensor(weights, name='weights')
angles = tf.convert_to_tensor(angles, name='angles')
if use_complex:
# use complexed-valued exponentials for calculation
cwts = tf.complex(weights, 0.) # cast to complex numbers
exps = tf.exp(tf.complex(0., angles)) # convert to point on complex plane
unit_coords = tf.matmul(cwts, exps) # take the weighted mixture of the unit circle coordinates
return tf.angle(unit_coords, name=scope) # return angle of averaged coordinate
else:
# use real-numbered pairs of values
sins = tf.sin(angles)
coss = tf.cos(angles)
y_coords = tf.matmul(weights, sins)
x_coords = tf.matmul(weights, coss)
return tf.atan2(y_coords, x_coords, name=scope)
示例6: cartesian_to_spherical_coordinates
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def cartesian_to_spherical_coordinates(point_cartesian, eps=None, name=None):
"""Function to transform Cartesian coordinates to spherical coordinates.
This function assumes a right handed coordinate system with `z` pointing up.
When `x` and `y` are both `0`, the function outputs `0` for `phi`. Note that
the function is not smooth when `x = y = 0`.
Note:
In the following, A1 to An are optional batch dimensions.
Args:
point_cartesian: A tensor of shape `[A1, ..., An, 3]`. In the last
dimension, the data follows the `x`, `y`, `z` order.
eps: A small `float`, to be added to the denominator. If left as `None`,
its value is automatically selected using `point_cartesian.dtype`.
name: A name for this op. Defaults to `cartesian_to_spherical_coordinates`.
Returns:
A tensor of shape `[A1, ..., An, 3]`. The last dimensions contains
(`r`,`theta`,`phi`), where `r` is the sphere radius, `theta` is the polar
angle and `phi` is the azimuthal angle.
"""
with tf.compat.v1.name_scope(name, "cartesian_to_spherical_coordinates",
[point_cartesian]):
point_cartesian = tf.convert_to_tensor(value=point_cartesian)
shape.check_static(
tensor=point_cartesian,
tensor_name="point_cartesian",
has_dim_equals=(-1, 3))
x, y, z = tf.unstack(point_cartesian, axis=-1)
radius = tf.norm(tensor=point_cartesian, axis=-1)
theta = tf.acos(safe_ops.safe_unsigned_div(z, radius, eps))
phi = tf.atan2(y, x)
return tf.stack((radius, theta, phi), axis=-1)
示例7: from_quaternion
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def from_quaternion(quaternion, name=None):
"""Converts a quaternion to an axis-angle representation.
Note:
In the following, A1 to An are optional batch dimensions.
Args:
quaternion: A tensor of shape `[A1, ..., An, 4]`, where the last dimension
represents a normalized quaternion.
name: A name for this op that defaults to "axis_angle_from_quaternion".
Returns:
Tuple of two tensors of shape `[A1, ..., An, 3]` and `[A1, ..., An, 1]`,
where the first tensor represents the axis, and the second represents the
angle. The resulting axis is a normalized vector.
Raises:
ValueError: If the shape of `quaternion` is not supported.
"""
with tf.compat.v1.name_scope(name, "axis_angle_from_quaternion",
[quaternion]):
quaternion = tf.convert_to_tensor(value=quaternion)
shape.check_static(
tensor=quaternion, tensor_name="quaternion", has_dim_equals=(-1, 4))
quaternion = asserts.assert_normalized(quaternion)
# This prevents zero norm xyz and zero w, and is differentiable.
quaternion += asserts.select_eps_for_addition(quaternion.dtype)
xyz, w = tf.split(quaternion, (3, 1), axis=-1)
norm = tf.norm(tensor=xyz, axis=-1, keepdims=True)
angle = 2.0 * tf.atan2(norm, tf.abs(w))
axis = safe_ops.safe_unsigned_div(safe_ops.nonzero_sign(w) * xyz, norm)
return axis, angle
示例8: tf_angle_vector_to_orientation
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def tf_angle_vector_to_orientation(angle_vectors_tensor):
""" Converts angle unit vectors into orientation angle representation.
e.g. [0.717, 0.717] -> 45, [0, 1] -> 90
Args:
angle_vectors_tensor: a tensor of shape (N, 2) of angle unit vectors
in the format [x, y]
Returns:
A tensor of shape (N,) of orientation angles
"""
x = angle_vectors_tensor[:, 0]
y = angle_vectors_tensor[:, 1]
return tf.atan2(y, x)
示例9: visualize_degree_map
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def visualize_degree_map(ori_maps, name='degree_maps'):
# ori_maps [B,H,W,2] tf.float32, cos,sin
with tf.name_scope(name):
cos_maps = tf.slice(ori_maps, [0,0,0,0], [-1,-1,-1,1])
sin_maps = tf.slice(ori_maps, [0,0,0,1], [-1,-1,-1,1])
atan_maps = tf.atan2(sin_maps, cos_maps)
angle2rgb = tf.constant(get_angle_colorbar())
degree_maps = tf.cast(tf.clip_by_value(atan_maps*180/np.pi+180, 0, 360), tf.int32)
degree_maps = tf.gather(angle2rgb, degree_maps[...,0])
return degree_maps
示例10: compute_inputs
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def compute_inputs(x, freqs, n_fft, n_frames, input_features, norm=False):
if norm:
norm_fn = instance_norm
else:
def norm_fn(x):
return x
freqs_tf = tf.constant(freqs, name="freqs", dtype='float32')
inputs = {}
with tf.variable_scope('real'):
inputs['real'] = norm_fn(tf.reshape(
tf.matmul(x, tf.cos(freqs_tf)), [1, 1, n_frames, n_fft // 2]))
with tf.variable_scope('imag'):
inputs['imag'] = norm_fn(tf.reshape(
tf.matmul(x, tf.sin(freqs_tf)), [1, 1, n_frames, n_fft // 2]))
with tf.variable_scope('mags'):
inputs['mags'] = norm_fn(tf.reshape(
tf.sqrt(
tf.maximum(1e-15, inputs['real'] * inputs['real'] + inputs[
'imag'] * inputs['imag'])), [1, 1, n_frames, n_fft // 2]))
with tf.variable_scope('phase'):
inputs['phase'] = norm_fn(tf.atan2(inputs['imag'], inputs['real']))
with tf.variable_scope('unwrapped'):
inputs['unwrapped'] = tf.py_func(
unwrap, [inputs['phase']], tf.float32)
with tf.variable_scope('unwrapped_difference'):
inputs['unwrapped_difference'] = (tf.slice(
inputs['unwrapped'],
[0, 0, 0, 1], [-1, -1, -1, n_fft // 2 - 1]) -
tf.slice(
inputs['unwrapped'],
[0, 0, 0, 0], [-1, -1, -1, n_fft // 2 - 1]))
if 'unwrapped_difference' in input_features:
for k, v in input_features:
if k is not 'unwrapped_difference':
inputs[k] = tf.slice(
v, [0, 0, 0, 0], [-1, -1, -1, n_fft // 2 - 1])
net = tf.concat([inputs[i] for i in input_features], 1)
return inputs, net
示例11: angle
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def angle(z):
# from https://github.com/tensorflow/tensorflow/issues/483
"""
Returns the elementwise arctan of z, choosing the quadrant correctly.
Quadrant I: arctan(y/x)
Qaudrant II: \pi + arctan(y/x) (phase of x<0, y=0 is \pi)
Quadrant III: -\pi + arctan(y/x)
Quadrant IV: arctan(y/x)
Inputs:
z: tf.complex64 or tf.complex128 tensor
Retunrs:
Angle of z
"""
return tf.atan2(tf.imag(z), tf.real(z))
# if z.dtype == tf.complex128:
# dtype = tf.float64
# else:
# dtype = tf.float32
# x = tf.real(z)
# y = tf.imag(z)
# xneg = tf.cast(x < 0.0, dtype)
# yneg = tf.cast(y < 0.0, dtype)
# ypos = tf.cast(y >= 0.0, dtype)
# offset = xneg * (ypos - yneg) * np.pi
# return tf.atan(y / x) + offset
示例12: get_degree_maps
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def get_degree_maps(ori_maps):
# ori_maps : [B,H,W,2], consist of cos, sin response
cos_maps = tf.slice(ori_maps, [0,0,0,0], [-1,-1,-1,1])
sin_maps = tf.slice(ori_maps, [0,0,0,1], [-1,-1,-1,1])
atan_maps = tf.atan2(sin_maps, cos_maps)
angle2rgb = tf.constant(get_angle_colorbar())
degree_maps = tf.cast(tf.clip_by_value(atan_maps*180/np.pi+180, 0, 360), tf.int32)
degree_maps = tf.gather(angle2rgb, degree_maps[...,0])
return degree_maps, atan_maps
# def inverse_warp_view_1_to_2(photos1, depths1, depths2, c1Tc2s, intrinsics_3x3, thetas1=None, thetas2=None, depth_thresh=0.5):
# if thetas1 is not None:
# # inverse in-plane transformation
# photo_depths1 = tf.concat([photos1, depths1], axis=-1)
# inwarp_photo_depths1, _ = inplane_inverse_warp(photo_depths1, thetas1)
# photos1 = tf.slice(inwarp_photo_depths1, [0,0,0,0],[-1,-1,-1,1])
# depths1 = tf.slice(inwarp_photo_depths1, [0,0,0,1],[-1,-1,-1,1])
# # projective inverse transformation
# photos2w, visible_masks2 = projective_inverse_warp(photos1, depths2, c1Tc2s,
# intrinsics_3x3, depths1, depth_thresh)
# projective_visible_masks2 = tf.identity(visible_masks2)
# if thetas2 is not None:
# # inverse in-plane transformation
# photo_masks2 = tf.concat([photos2w, visible_masks2], axis=-1)
# inwarp_photo_masks2, _ = inplane_inverse_warp(photo_masks2, thetas2)
# photos2w = tf.slice(inwarp_photo_masks2, [0,0,0,0], [-1,-1,-1,1])
# visible_masks2 = tf.slice(inwarp_photo_masks2, [0,0,0,1], [-1,-1,-1,1])
# visible_masks2 = tf.cast(tf.greater(visible_masks2, 0.5), tf.float32)
# return photos2w, visible_masks2, projective_visible_masks2
示例13: test_forward_atan2
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def test_forward_atan2():
"""test operator tan """
tf.disable_eager_execution()
np_data_1 = np.random.uniform(1, 100, size=(2, 3, 5)).astype(np.float32)
np_data_2 = np.random.uniform(1, 100, size=(2, 3, 5)).astype(np.float32)
tf.reset_default_graph()
in_data_1 = tf.placeholder(tf.float32, (2, 3, 5), name="in_data_1")
in_data_2 = tf.placeholder(tf.float32, (2, 3, 5), name="in_data_2")
tf.atan2(in_data_1, in_data_2, name="atan2")
compare_tf_with_tvm([np_data_1, np_data_2], ['in_data_1:0', 'in_data_2:0'], 'atan2:0')
示例14: quaternion2euler_full_tf
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def quaternion2euler_full_tf(q, rotseq="yzy"):
def twoaxisrot_tf(r11, r12, r21, r31, r32):
a0 = tf.atan2(r11, r12)
a1 = tf.acos(r21)
a2 = tf.atan2(r31, r32)
return tf.stack([a0, a1, a2], axis=-1)
def threeaxisrot_tf(r11, r12, r21, r31, r32):
a0 = tf.atan2(r31, r32)
a1 = tf.asin(tf.clip_by_value(r21, -1.0, 1.0))
a2 = tf.atan2(r11, r12)
return tf.stack([a0, a1, a2], axis=-1)
q_norm = tf.expand_dims(tf.norm(q, axis=-1), axis=-1)
q /= q_norm
if rotseq == "yzy":
angles = twoaxisrot_tf(2 * (q[:, 2] * q[:, 3] + q[:, 0] * q[:, 1]),
-2 * (q[:, 1] * q[:, 2] - q[:, 0] * q[:, 3]),
q[:, 0] * q[:, 0] - q[:, 1] * q[:, 1] + q[:, 2] * q[:, 2] - q[:, 3] * q[:, 3],
2 * (q[:, 2] * q[:, 3] - q[:, 0] * q[:, 1]),
2 * (q[:, 1] * q[:, 2] + q[:, 0] * q[:, 3]))
yaw = angles[:, 2]
pitch = angles[:, 1]
elif rotseq == "xzy":
angles = threeaxisrot_tf(2 * (q[:, 2] * q[:, 3] + q[:, 0] * q[:, 1]),
q[:, 0] * q[:, 0] - q[:, 1] * q[:, 1] + q[:, 2] * q[:, 2] - q[:, 3] * q[:, 3],
-2 * (q[:, 1] * q[:, 2] - q[:, 0] * q[:, 3]),
2 * (q[:, 1] * q[:, 3] + q[:, 0] * q[:, 2]),
q[:, 0] * q[:, 0] + q[:, 1] * q[:, 1] - q[:, 2] * q[:, 2] - q[:, 3] * q[:, 3])
yaw = angles[:, 0]
pitch = angles[:, 1]
elif rotseq == "zxy":
angles = threeaxisrot_tf(-2 * (q[:, 1] * q[:, 2] - q[:, 0] * q[:, 3]),
q[:, 0] * q[:, 0] - q[:, 1] * q[:, 1] + q[:, 2] * q[:, 2] - q[:, 3] * q[:, 3],
2 * (q[:, 2] * q[:, 3] + q[:, 0] * q[:, 1]),
-2 * (q[:, 1] * q[:, 3] - q[:, 0] * q[:, 2]),
q[:, 0] * q[:, 0] - q[:, 1] * q[:, 1] - q[:, 2] * q[:, 2] + q[:, 3] * q[:, 3])
yaw = angles[:, 0]
pitch = angles[:, 2]
return yaw, pitch
示例15: build_networks
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import atan2 [as 别名]
def build_networks(lfnet_config, photo, is_training):
# Detector
DET = importlib.import_module(lfnet_config.detector)
detector = DET.Model(lfnet_config, is_training)
if lfnet_config.input_inst_norm:
print('Apply instance norm on input photos')
photos1 = instance_normalization(photo)
heatmaps, det_endpoints = build_detector_helper(lfnet_config, detector, photo)
# extract patches
kpts = det_endpoints['kpts']
batch_inds = det_endpoints['batch_inds']
kp_patches = build_patch_extraction(lfnet_config, det_endpoints, photo)
# Descriptor
DESC = importlib.import_module(lfnet_config.descriptor)
descriptor = DESC.Model(lfnet_config, is_training)
desc_feats, desc_endpoints = descriptor.build_model(kp_patches, reuse=False) # [B*K,D]
# scale and orientation (extra)
scale_maps = det_endpoints['scale_maps']
ori_maps = det_endpoints['ori_maps'] # cos/sin
degree_maps, _ = get_degree_maps(ori_maps) # degree (rgb psuedo color code)
kpts_scale = det_endpoints['kpts_scale'] # scale factor
kpts_ori = det_endpoints['kpts_ori']
kpts_ori = tf.atan2(kpts_ori[:,1], kpts_ori[:,0]) # radian
ops = {
'photo': photo,
'is_training': is_training,
'kpts': kpts,
'feats': desc_feats,
# EXTRA
'scale_maps': scale_maps,
'kpts_scale': kpts_scale,
'degree_maps': degree_maps,
'kpts_ori': kpts_ori,
'heatmaps': heatmaps,
}
return ops