本文整理汇总了Python中tensorflow.assign_add方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.assign_add方法的具体用法?Python tensorflow.assign_add怎么用?Python tensorflow.assign_add使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.assign_add方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _create_autosummary_var
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assign_add [as 别名]
def _create_autosummary_var(name, value_expr):
assert not _autosummary_finalized
v = tf.cast(value_expr, tf.float32)
if v.shape.ndims is 0:
v = [v, np.float32(1.0)]
elif v.shape.ndims is 1:
v = [tf.reduce_sum(v), tf.cast(tf.shape(v)[0], tf.float32)]
else:
v = [tf.reduce_sum(v), tf.reduce_prod(tf.cast(tf.shape(v), tf.float32))]
v = tf.cond(tf.is_finite(v[0]), lambda: tf.stack(v), lambda: tf.zeros(2))
with tf.control_dependencies(None):
var = tf.Variable(tf.zeros(2)) # [numerator, denominator]
update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v))
if name in _autosummary_vars:
_autosummary_vars[name].append(var)
else:
_autosummary_vars[name] = [var]
return update_op
#----------------------------------------------------------------------------
# Call filewriter.add_summary() with all summaries in the default graph,
# automatically finalizing and merging them on the first call.
示例2: testBasicDomainSeparationStartPoint
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assign_add [as 别名]
def testBasicDomainSeparationStartPoint(self):
with self.test_session() as sess:
# Test for when global_step < domain_separation_startpoint
step = tf.contrib.slim.get_or_create_global_step()
sess.run(tf.global_variables_initializer()) # global_step = 0
params = {'domain_separation_startpoint': 2}
weight = dsn.dsn_loss_coefficient(params)
weight_np = sess.run(weight)
self.assertAlmostEqual(weight_np, 1e-10)
step_op = tf.assign_add(step, 1)
step_np = sess.run(step_op) # global_step = 1
weight = dsn.dsn_loss_coefficient(params)
weight_np = sess.run(weight)
self.assertAlmostEqual(weight_np, 1e-10)
# Test for when global_step >= domain_separation_startpoint
step_np = sess.run(step_op) # global_step = 2
tf.logging.info(step_np)
weight = dsn.dsn_loss_coefficient(params)
weight_np = sess.run(weight)
self.assertAlmostEqual(weight_np, 1.0)
示例3: get_action
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assign_add [as 别名]
def get_action(self):
deterministic_action = self.mean
if self.ornstein_uhlenbeck_state:
random_norm = tf.random_normal(
shape=self.mean.get_shape().as_list()[1:],
mean=0.0,
stddev=1.0)
ou_noise = tf.assign_add(
self.ornstein_uhlenbeck_state,
self._theta * (-self.ornstein_uhlenbeck_state) +
random_norm * self._sigma)
sample_action = self.mean + ou_noise * self._noise_scale
output_action = tf.cond(self.deterministic_ph,
lambda: deterministic_action,
lambda: sample_action)
else:
output_action = deterministic_action
return output_action
示例4: _graph_fn_get_should_sync
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assign_add [as 别名]
def _graph_fn_get_should_sync(self):
if get_backend() == "tf":
inc_op = tf.assign_add(self.steps_since_last_sync, 1)
should_sync = inc_op >= self.q_sync_spec.sync_interval
def reset_op():
op = tf.assign(self.steps_since_last_sync, 0)
with tf.control_dependencies([op]):
return tf.no_op()
sync_op = tf.cond(
pred=inc_op >= self.q_sync_spec.sync_interval,
true_fn=reset_op,
false_fn=tf.no_op
)
with tf.control_dependencies([sync_op]):
return tf.identity(should_sync)
else:
raise NotImplementedError("TODO")
示例5: _load_sampler
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assign_add [as 别名]
def _load_sampler(self):
if not self.structure_path:
print("Loading the default file")
with open('../../../../bayesian_optimization/sample_structures6.txt', 'r') as fp:
lines = fp.readlines()
else:
with open(self.structure_path, 'r') as fp:
lines = fp.readlines()
lines = [eval(line.strip()) for line in lines]
for line in lines:
row = []
for ele in line:
row += ele
self.structures.append(row)
# self.sample_arcs = self.structures[0]
self.idx_arc = tf.get_variable("idx_arc", initializer=tf.constant(0), dtype=tf.int32)
self.reset_op = self.idx_arc.assign(0)
self.inc_op = self.idx_arc.assign(self.idx_arc + 1)
# self.idx_arc = tf.assign_add(self.idx_arc, tf.constant(1, dtype=tf.int32))
self.sample_arc2 = tf.reshape(tf.gather(self.structures, self.idx_arc), [-1])
# self.sample_arc3 = tf.get_variable("sample_arc3", shape=[len(self.structures[0])])
self.sample_arc3 = tf.placeholder(tf.float32, shape=[len(self.structures[0])])
示例6: apply_stats_eigen
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assign_add [as 别名]
def apply_stats_eigen(self, eigen_list):
"""
apply the update using the eigen values of the stats
:param eigen_list: ([TensorFlow Tensor]) The list of eigen values of the stats
:return: ([TensorFlow Tensor]) update operations
"""
update_ops = []
if self.verbose > 1:
print(('updating %d eigenvalue/vectors' % len(eigen_list)))
for _, (tensor, mark) in enumerate(zip(eigen_list, self.eigen_update_list)):
stats_eigen_var = self.eigen_reverse_lookup[mark]
update_ops.append(
tf.assign(stats_eigen_var, tensor, use_locking=True))
with tf.control_dependencies(update_ops):
factor_step_op = tf.assign_add(self.factor_step, 1)
update_ops.append(factor_step_op)
if KFAC_DEBUG:
update_ops.append(tf.Print(tf.constant(
0.), [tf.convert_to_tensor('updated kfac factors')]))
return update_ops
示例7: _apply_cond
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assign_add [as 别名]
def _apply_cond(self, apply_fn, grad, var, *args, **kwargs):
"""Apply conditionally if counter is zero."""
grad_acc = self.get_slot(var, "grad_acc")
def apply_adam(grad_acc, apply_fn, grad, var, *args, **kwargs):
total_grad = (grad_acc + grad) / tf.cast(self._n_t, grad.dtype)
adam_op = apply_fn(total_grad, var, *args, **kwargs)
with tf.control_dependencies([adam_op]):
grad_acc_to_zero_op = grad_acc.assign(tf.zeros_like(grad_acc),
use_locking=self._use_locking)
return tf.group(adam_op, grad_acc_to_zero_op)
def accumulate_gradient(grad_acc, grad):
assign_op = tf.assign_add(grad_acc, grad, use_locking=self._use_locking)
return tf.group(assign_op) # Strip return value
return tf.cond(
tf.equal(self._get_iter_variable(), 0),
lambda: apply_adam(grad_acc, apply_fn, grad, var, *args, **kwargs),
lambda: accumulate_gradient(grad_acc, grad))
示例8: call_fake_controller
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assign_add [as 别名]
def call_fake_controller(push_values, pop_values, read_values, output_values):
"""Mock a RNN controller from a set of expected outputs.
Args:
push_values: Expected controller push values.
pop_values: Expected controller pop values.
read_values: Expected controller read values.
output_values: Expected controller output values.
Returns:
A callable which behaves like the call method of an NeuralStackCell.
"""
def call(cell, inputs, state, batch_size):
del inputs
del batch_size
next_step = tf.assign_add(cell.current_step, tf.constant(1))
return (
tf.slice(tf.constant(push_values), [next_step, 0], [1, -1]),
tf.slice(tf.constant(pop_values), [next_step, 0], [1, -1]),
tf.slice(tf.constant(read_values), [next_step, 0, 0], [1, -1, -1]),
tf.slice(tf.constant(output_values), [next_step, 0, 0], [1, -1, -1]),
state
)
return call
示例9: test_ref_assign_add
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assign_add [as 别名]
def test_ref_assign_add(self):
# Currently ngraph and tf have different assign semantics
# eval(ng.assign(a, 1)) resturns None, but eval(tf.assign(a, 1)) returns
# a which is 1.
# TODO: fix this test after assign op / user_deps are fixed in ngraph
# TODO: double assignments fails
# tf placeholder
a = tf.Variable(tf.constant(np.random.randn(2, 3), name="a"))
b = tf.Variable(tf.constant(np.random.randn(2, 3), name="b"))
init_op = tf.global_variables_initializer()
a_update = tf.assign_add(a, b)
# test
tf_result = self.tf_run(a_update, tf_init_op=init_op)
ng_result = self.ng_run(a)
ng.testing.assert_allclose(tf_result, ng_result)
示例10: build_act
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assign_add [as 别名]
def build_act(actor_num, env, q_func, num_actions, eps, scope="deepq", data_format=None, reuse=None, replay_queue=None, prioritized_replay_eps=None, gamma=None, replay_queue_capacity=None, multi_step_n=1, framestack=4, num_actor_steps=None):
# Build the actor using \epsilon-greedy exploration
# Environments are wrapped with a data gathering class
with tf.variable_scope('deepq', reuse=reuse):
with tf.device('/gpu:0'):
act_obs = env.observation()
q_values = q_func(act_obs, num_actions, scope="read_q_func", data_format=data_format)
deterministic_actions = tf.argmax(q_values, axis=1, output_type=tf.int32)
batch_size = deterministic_actions.get_shape()[0]
with tf.device('/cpu:0'):
random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int32)
chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
output_actions = tf.where(chose_random, random_actions, deterministic_actions)
q_t_selected = tf.reduce_sum(q_values * tf.one_hot(output_actions, num_actions), 1)
with tf.control_dependencies([tf.assign_add(num_actor_steps, batch_size, use_locking=True)]):
return env.step(output_actions, q_values=q_values, q_t_selected=q_t_selected)
示例11: _apply_dense
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assign_add [as 别名]
def _apply_dense(self, grad, var):
train_op = super(MockAdamOptimizer, self)._apply_dense(grad, var)
counter = self.get_slot(var, "adam_counter")
return tf.group(train_op, tf.assign_add(counter, [1.0]))
示例12: advance_counters
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assign_add [as 别名]
def advance_counters(self, total):
"""Returns ops to advance the per-component step and total counters.
Args:
total: Total number of actions to increment counters by.
Returns:
tf.Group op incrementing 'step' by 1 and 'total' by total.
"""
update_total = tf.assign_add(self._total, total, use_locking=True)
update_step = tf.assign_add(self._step, 1, use_locking=True)
return tf.group(update_total, update_step)
示例13: accumulate_privacy_spending
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assign_add [as 别名]
def accumulate_privacy_spending(self, unused_eps_delta,
sigma, num_examples):
"""Accumulate privacy spending.
In particular, accounts for privacy spending when we assume there
are num_examples, and we are releasing the vector
(sum_{i=1}^{num_examples} x_i) + Normal(0, stddev=l2norm_bound*sigma)
where l2norm_bound is the maximum l2_norm of each example x_i, and
the num_examples have been randomly selected out of a pool of
self.total_examples.
Args:
unused_eps_delta: EpsDelta pair which can be tensors. Unused
in this accountant.
sigma: the noise sigma, in the multiples of the sensitivity (that is,
if the l2norm sensitivity is k, then the caller must have added
Gaussian noise with stddev=k*sigma to the result of the query).
num_examples: the number of examples involved.
Returns:
a TensorFlow operation for updating the privacy spending.
"""
q = tf.cast(num_examples, tf.float64) * 1.0 / self._total_examples
moments_accum_ops = []
for i in range(len(self._log_moments)):
moment = self._compute_log_moment(sigma, q, self._moment_orders[i])
moments_accum_ops.append(tf.assign_add(self._log_moments[i], moment))
return tf.group(*moments_accum_ops)
示例14: testDiet
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assign_add [as 别名]
def testDiet(self):
params = diet.diet_adam_optimizer_params()
@diet.fn_with_diet_vars(params)
def model_fn(x):
y = tf.layers.dense(x, 10, use_bias=False)
return y
@diet.fn_with_diet_vars(params)
def model_fn2(x):
y = tf.layers.dense(x, 10, use_bias=False)
return y
x = tf.random_uniform((10, 10))
y = model_fn(x) + 10.
y = model_fn2(y) + 10.
grads = tf.gradients(y, [x])
with tf.control_dependencies(grads):
incr_step = tf.assign_add(tf.train.get_or_create_global_step(), 1)
train_op = tf.group(incr_step, *grads)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
orig_vals = sess.run(tf.global_variables())
for _ in range(10):
sess.run(train_op)
new_vals = sess.run(tf.global_variables())
different = []
for old, new in zip(orig_vals, new_vals):
try:
self.assertAllClose(old, new)
except AssertionError:
different.append(True)
self.assertEqual(len(different), len(tf.global_variables()))
示例15: testStop
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assign_add [as 别名]
def testStop(self):
global_step = tf.train.create_global_step()
tf.summary.scalar("global_step", global_step)
incr_global_step = tf.assign_add(global_step, 1)
ckpt_dir = self.ckpt_dir("stop")
dummy = DummyHook(ckpt_dir, every_n_steps=10)
with self.sess(dummy, ckpt_dir) as sess:
for _ in range(20):
sess.run(incr_global_step)
# Summary files should now have 2 global step values in them
self.flush()
# Run for 10 more so that the hook gets triggered again
for _ in range(10):
sess.run(incr_global_step)
# Check that the metrics have actually been collected.
self.assertTrue("" in dummy.test_metrics)
metrics = dummy.test_metrics[""]
self.assertTrue("global_step_1" in metrics)
steps, vals = metrics["global_step_1"]
self.assertTrue(len(steps) == len(vals))
self.assertTrue(len(steps) >= 2)
# Run for 10 more so that the hook triggers stoppage
for _ in range(10):
sess.run(incr_global_step)
with self.assertRaisesRegexp(RuntimeError, "after should_stop requested"):
sess.run(incr_global_step)