当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.assert_variables_initialized方法代码示例

本文整理汇总了Python中tensorflow.assert_variables_initialized方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.assert_variables_initialized方法的具体用法?Python tensorflow.assert_variables_initialized怎么用?Python tensorflow.assert_variables_initialized使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.assert_variables_initialized方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_input_moments

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_variables_initialized [as 别名]
def get_input_moments(x, is_init=False, name=None):
    '''Input normalization'''
    with tf.variable_scope(name, default_name='input_norm'):
        if is_init:
            # data based initialization of parameters
            mean, variance = tf.nn.moments(x, [0])
            std = tf.sqrt(variance + 1e-8)
            mean0 = tf.get_variable('mean0', dtype=tf.float32,
                                    initializer=mean, trainable=False)
            std0 = tf.get_variable('std0', dtype=tf.float32,
                                   initializer=std, trainable=False)
            return mean, std

        else:
            mean0 = tf.get_variable('mean0')
            std0 = tf.get_variable('std0')
            tf.assert_variables_initialized([mean0, std0])
            return mean0, std0 
开发者ID:LMescheder,项目名称:TheNumericsOfGANs,代码行数:20,代码来源:ops.py

示例2: dense

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_variables_initialized [as 别名]
def dense(x, num_units, nonlinearity=None, init_scale=1., counters={}, init=False, ema=None, **kwargs):
    ''' fully connected layer '''
    name = get_name('dense', counters)
    with tf.variable_scope(name):
        if init:
            # data based initialization of parameters
            V = tf.get_variable('V', [int(x.get_shape()[1]),num_units], tf.float32, tf.random_normal_initializer(0, 0.05), trainable=True)
            V_norm = tf.nn.l2_normalize(V.initialized_value(), [0])
            x_init = tf.matmul(x, V_norm)
            m_init, v_init = tf.nn.moments(x_init, [0])
            scale_init = init_scale/tf.sqrt(v_init + 1e-10)
            g = tf.get_variable('g', dtype=tf.float32, initializer=scale_init, trainable=True)
            b = tf.get_variable('b', dtype=tf.float32, initializer=-m_init*scale_init, trainable=True)
            x_init = tf.reshape(scale_init,[1,num_units])*(x_init-tf.reshape(m_init,[1,num_units]))
            if nonlinearity is not None:
                x_init = nonlinearity(x_init)
            return x_init

        else:
            V,g,b = get_vars_maybe_avg(['V','g','b'], ema)
            tf.assert_variables_initialized([V,g,b])

            # use weight normalization (Salimans & Kingma, 2016)
            x = tf.matmul(x, V)
            scaler = g/tf.sqrt(tf.reduce_sum(tf.square(V),[0]))
            x = tf.reshape(scaler,[1,num_units])*x + tf.reshape(b,[1,num_units])

            # apply nonlinearity
            if nonlinearity is not None:
                x = nonlinearity(x)
            return x 
开发者ID:openai,项目名称:weightnorm,代码行数:33,代码来源:nn.py

示例3: conv2d

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_variables_initialized [as 别名]
def conv2d(x, num_filters, filter_size=[3,3], stride=[1,1], pad='SAME', nonlinearity=None, init_scale=1., counters={}, init=False, ema=None, **kwargs):
    ''' convolutional layer '''
    name = get_name('conv2d', counters)
    with tf.variable_scope(name):
        if init:
            # data based initialization of parameters
            V = tf.get_variable('V', filter_size+[int(x.get_shape()[-1]),num_filters], tf.float32, tf.random_normal_initializer(0, 0.05), trainable=True)
            V_norm = tf.nn.l2_normalize(V.initialized_value(), [0,1,2])
            x_init = tf.nn.conv2d(x, V_norm, [1]+stride+[1], pad)
            m_init, v_init = tf.nn.moments(x_init, [0,1,2])
            scale_init = init_scale/tf.sqrt(v_init + 1e-8)
            g = tf.get_variable('g', dtype=tf.float32, initializer=scale_init, trainable=True)
            b = tf.get_variable('b', dtype=tf.float32, initializer=-m_init*scale_init, trainable=True)
            x_init = tf.reshape(scale_init,[1,1,1,num_filters])*(x_init-tf.reshape(m_init,[1,1,1,num_filters]))
            if nonlinearity is not None:
                x_init = nonlinearity(x_init)
            return x_init

        else:
            V, g, b = get_vars_maybe_avg(['V', 'g', 'b'], ema)
            tf.assert_variables_initialized([V,g,b])

            # use weight normalization (Salimans & Kingma, 2016)
            W = tf.reshape(g,[1,1,1,num_filters])*tf.nn.l2_normalize(V,[0,1,2])

            # calculate convolutional layer output
            x = tf.nn.bias_add(tf.nn.conv2d(x, W, [1]+stride+[1], pad), b)

            # apply nonlinearity
            if nonlinearity is not None:
                x = nonlinearity(x)
            return x 
开发者ID:openai,项目名称:weightnorm,代码行数:34,代码来源:nn.py

示例4: deconv2d

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_variables_initialized [as 别名]
def deconv2d(x, num_filters, filter_size=[3,3], stride=[1,1], pad='SAME', nonlinearity=None, init_scale=1., counters={}, init=False, ema=None, **kwargs):
    ''' transposed convolutional layer '''
    name = get_name('deconv2d', counters)
    xs = int_shape(x)
    if pad=='SAME':
        target_shape = [xs[0], xs[1]*stride[0], xs[2]*stride[1], num_filters]
    else:
        target_shape = [xs[0], xs[1]*stride[0] + filter_size[0]-1, xs[2]*stride[1] + filter_size[1]-1, num_filters]
    with tf.variable_scope(name):
        if init:
            # data based initialization of parameters
            V = tf.get_variable('V', filter_size+[num_filters,int(x.get_shape()[-1])], tf.float32, tf.random_normal_initializer(0, 0.05), trainable=True)
            V_norm = tf.nn.l2_normalize(V.initialized_value(), [0,1,3])
            x_init = tf.nn.conv2d_transpose(x, V_norm, target_shape, [1]+stride+[1], padding=pad)
            m_init, v_init = tf.nn.moments(x_init, [0,1,2])
            scale_init = init_scale/tf.sqrt(v_init + 1e-8)
            g = tf.get_variable('g', dtype=tf.float32, initializer=scale_init, trainable=True)
            b = tf.get_variable('b', dtype=tf.float32, initializer=-m_init*scale_init, trainable=True)
            x_init = tf.reshape(scale_init,[1,1,1,num_filters])*(x_init-tf.reshape(m_init,[1,1,1,num_filters]))
            if nonlinearity is not None:
                x_init = nonlinearity(x_init)
            return x_init

        else:
            V, g, b = get_vars_maybe_avg(['V', 'g', 'b'], ema)
            tf.assert_variables_initialized([V,g,b])

            # use weight normalization (Salimans & Kingma, 2016)
            W = tf.reshape(g,[1,1,num_filters,1])*tf.nn.l2_normalize(V,[0,1,3])

            # calculate convolutional layer output
            x = tf.nn.conv2d_transpose(x, W, target_shape, [1]+stride+[1], padding=pad)
            x = tf.nn.bias_add(x, b)

            # apply nonlinearity
            if nonlinearity is not None:
                x = nonlinearity(x)
            return x 
开发者ID:openai,项目名称:weightnorm,代码行数:40,代码来源:nn.py

示例5: testNoVars

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_variables_initialized [as 别名]
def testNoVars(self):
    with tf.Graph().as_default():
      self.assertEqual(None, tf.assert_variables_initialized()) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:5,代码来源:variables_test.py

示例6: testVariables

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_variables_initialized [as 别名]
def testVariables(self):
    with tf.Graph().as_default(), self.test_session() as sess:
      v = tf.Variable([1, 2])
      w = tf.Variable([3, 4])
      _ = v, w
      inited = tf.assert_variables_initialized()
      with self.assertRaisesOpError("Attempting to use uninitialized value"):
        sess.run(inited)
      tf.global_variables_initializer().run()
      sess.run(inited) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:12,代码来源:variables_test.py

示例7: testVariableList

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_variables_initialized [as 别名]
def testVariableList(self):
    with tf.Graph().as_default(), self.test_session() as sess:
      v = tf.Variable([1, 2])
      w = tf.Variable([3, 4])
      inited = tf.assert_variables_initialized([v])
      with self.assertRaisesOpError("Attempting to use uninitialized value"):
        inited.op.run()
      sess.run(w.initializer)
      with self.assertRaisesOpError("Attempting to use uninitialized value"):
        inited.op.run()
      v.initializer.run()
      inited.op.run() 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:14,代码来源:variables_test.py

示例8: testPrepareSessionSucceeds

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_variables_initialized [as 别名]
def testPrepareSessionSucceeds(self):
    with tf.Graph().as_default():
      v = tf.Variable([1.0, 2.0, 3.0], name="v")
      sm = tf.train.SessionManager(ready_op=tf.assert_variables_initialized())
      sess = sm.prepare_session("", init_op=tf.global_variables_initializer())
      self.assertAllClose([1.0, 2.0, 3.0], sess.run(v)) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:8,代码来源:session_manager_test.py

示例9: testPrepareSessionSucceedsWithInitFeedDict

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_variables_initialized [as 别名]
def testPrepareSessionSucceedsWithInitFeedDict(self):
    with tf.Graph().as_default():
      p = tf.placeholder(tf.float32, shape=(3,))
      v = tf.Variable(p, name="v")
      sm = tf.train.SessionManager(ready_op=tf.assert_variables_initialized())
      sess = sm.prepare_session("",
                                init_op=tf.global_variables_initializer(),
                                init_feed_dict={p: [1.0, 2.0, 3.0]})
      self.assertAllClose([1.0, 2.0, 3.0], sess.run(v)) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:11,代码来源:session_manager_test.py

示例10: testRecoverSession

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_variables_initialized [as 别名]
def testRecoverSession(self):
    # Create a checkpoint.
    checkpoint_dir = os.path.join(self.get_temp_dir(), "recover_session")
    try:
      gfile.DeleteRecursively(checkpoint_dir)
    except errors.OpError:
      pass                      # Ignore
    gfile.MakeDirs(checkpoint_dir)

    with tf.Graph().as_default():
      v = tf.Variable(1, name="v")
      sm = tf.train.SessionManager(ready_op=tf.assert_variables_initialized())
      saver = tf.train.Saver({"v": v})
      sess, initialized = sm.recover_session("", saver=saver,
                                             checkpoint_dir=checkpoint_dir)
      self.assertFalse(initialized)
      sess.run(v.initializer)
      self.assertEquals(1, sess.run(v))
      saver.save(sess, os.path.join(checkpoint_dir,
                                    "recover_session_checkpoint"))
    # Create a new Graph and SessionManager and recover.
    with tf.Graph().as_default():
      v = tf.Variable(2, name="v")
      with self.test_session():
        self.assertEqual(False, tf.is_variable_initialized(v).eval())
      sm2 = tf.train.SessionManager(ready_op=tf.assert_variables_initialized())
      saver = tf.train.Saver({"v": v})
      sess, initialized = sm2.recover_session("", saver=saver,
                                              checkpoint_dir=checkpoint_dir)
      self.assertTrue(initialized)
      self.assertEqual(
          True, tf.is_variable_initialized(
              sess.graph.get_tensor_by_name("v:0")).eval(session=sess))
      self.assertEquals(1, sess.run(v)) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:36,代码来源:session_manager_test.py

示例11: testWaitForSessionReturnsNoneAfterTimeout

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_variables_initialized [as 别名]
def testWaitForSessionReturnsNoneAfterTimeout(self):
    with tf.Graph().as_default():
      tf.Variable(1, name="v")
      sm = tf.train.SessionManager(ready_op=tf.assert_variables_initialized(),
                                   recovery_wait_secs=1)

      # Set max_wait_secs to allow us to try a few times.
      with self.assertRaises(errors.DeadlineExceededError):
        sm.wait_for_session(master="", max_wait_secs=3) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:11,代码来源:session_manager_test.py

示例12: dense

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_variables_initialized [as 别名]
def dense(x, num_units, nonlinearity=None, init_scale=1., counters={}, init=False, ema=None, **kwargs):
    ''' fully connected layer '''
    name = get_name('dense', counters)
    with tf.variable_scope(name):
        if init:
            # data based initialization of parameters
            V = tf.get_variable('V', [int(x.get_shape()[1]),num_units], tf.float32, tf.random_normal_initializer(0, 0.05), trainable=True)
            V_norm = tf.nn.l2_normalize(V.initialized_value(), [0])
            x_init = tf.matmul(x, V_norm)
            m_init, v_init = tf.nn.moments(x_init, [0])
            scale_init = init_scale/tf.sqrt(v_init + 1e-10)
            g = tf.get_variable('g', dtype=tf.float32, initializer=scale_init, trainable=True)
            b = tf.get_variable('b', dtype=tf.float32, initializer=-m_init*scale_init, trainable=True)
            x_init = tf.reshape(scale_init,[1,num_units])*(x_init-tf.reshape(m_init,[1,num_units]))
            if nonlinearity is not None:
                x_init = nonlinearity(x_init)
            return x_init

        else:
            V,g,b = get_vars_maybe_avg(['V','g','b'], ema)
            # According to the comments at
            # https: // github.com / openai / pixel - cnn / issues / 17,
            # I simply comment the following line
            # tf.assert_variables_initialized([V,g,b])

            # use weight normalization (Salimans & Kingma, 2016)
            x = tf.matmul(x, V)
            scaler = g/tf.sqrt(tf.reduce_sum(tf.square(V),[0]))
            x = tf.reshape(scaler,[1,num_units])*x + tf.reshape(b,[1,num_units])

            # apply nonlinearity
            if nonlinearity is not None:
                x = nonlinearity(x)
            return x 
开发者ID:microsoft,项目名称:DualLearning,代码行数:36,代码来源:nn.py

示例13: conv2d

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_variables_initialized [as 别名]
def conv2d(x, num_filters, filter_size=[3,3], stride=[1,1], pad='SAME', nonlinearity=None, init_scale=1., counters={}, init=False, ema=None, **kwargs):
    ''' convolutional layer '''
    name = get_name('conv2d', counters)
    with tf.variable_scope(name):
        if init:
            # data based initialization of parameters
            V = tf.get_variable('V', filter_size+[int(x.get_shape()[-1]),num_filters], tf.float32, tf.random_normal_initializer(0, 0.05), trainable=True)
            V_norm = tf.nn.l2_normalize(V.initialized_value(), [0,1,2])
            x_init = tf.nn.conv2d(x, V_norm, [1]+stride+[1], pad)
            m_init, v_init = tf.nn.moments(x_init, [0,1,2])
            scale_init = init_scale/tf.sqrt(v_init + 1e-8)
            g = tf.get_variable('g', dtype=tf.float32, initializer=scale_init, trainable=True)
            b = tf.get_variable('b', dtype=tf.float32, initializer=-m_init*scale_init, trainable=True)
            x_init = tf.reshape(scale_init,[1,1,1,num_filters])*(x_init-tf.reshape(m_init,[1,1,1,num_filters]))
            if nonlinearity is not None:
                x_init = nonlinearity(x_init)
            return x_init

        else:
            V, g, b = get_vars_maybe_avg(['V', 'g', 'b'], ema)
            # tf.assert_variables_initialized([V,g,b])

            # use weight normalization (Salimans & Kingma, 2016)
            W = tf.reshape(g,[1,1,1,num_filters])*tf.nn.l2_normalize(V,[0,1,2])

            # calculate convolutional layer output
            x = tf.nn.bias_add(tf.nn.conv2d(x, W, [1]+stride+[1], pad), b)

            # apply nonlinearity
            if nonlinearity is not None:
                x = nonlinearity(x)
            return x 
开发者ID:microsoft,项目名称:DualLearning,代码行数:34,代码来源:nn.py

示例14: deconv2d

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_variables_initialized [as 别名]
def deconv2d(x, num_filters, filter_size=[3,3], stride=[1,1], pad='SAME', nonlinearity=None, init_scale=1., counters={}, init=False, ema=None, **kwargs):
    ''' transposed convolutional layer '''
    name = get_name('deconv2d', counters)
    xs = int_shape(x)
    if pad=='SAME':
        target_shape = [xs[0], xs[1]*stride[0], xs[2]*stride[1], num_filters]
    else:
        target_shape = [xs[0], xs[1]*stride[0] + filter_size[0]-1, xs[2]*stride[1] + filter_size[1]-1, num_filters]
    with tf.variable_scope(name):
        if init:
            # data based initialization of parameters
            V = tf.get_variable('V', filter_size+[num_filters,int(x.get_shape()[-1])], tf.float32, tf.random_normal_initializer(0, 0.05), trainable=True)
            V_norm = tf.nn.l2_normalize(V.initialized_value(), [0,1,3])
            x_init = tf.nn.conv2d_transpose(x, V_norm, target_shape, [1]+stride+[1], padding=pad)
            m_init, v_init = tf.nn.moments(x_init, [0,1,2])
            scale_init = init_scale/tf.sqrt(v_init + 1e-8)
            g = tf.get_variable('g', dtype=tf.float32, initializer=scale_init, trainable=True)
            b = tf.get_variable('b', dtype=tf.float32, initializer=-m_init*scale_init, trainable=True)
            x_init = tf.reshape(scale_init,[1,1,1,num_filters])*(x_init-tf.reshape(m_init,[1,1,1,num_filters]))
            if nonlinearity is not None:
                x_init = nonlinearity(x_init)
            return x_init

        else:
            V, g, b = get_vars_maybe_avg(['V', 'g', 'b'], ema)
            # tf.assert_variables_initialized([V,g,b])

            # use weight normalization (Salimans & Kingma, 2016)
            W = tf.reshape(g,[1,1,num_filters,1])*tf.nn.l2_normalize(V,[0,1,3])

            # calculate convolutional layer output
            x = tf.nn.conv2d_transpose(x, W, target_shape, [1]+stride+[1], padding=pad)
            x = tf.nn.bias_add(x, b)

            # apply nonlinearity
            if nonlinearity is not None:
                x = nonlinearity(x)
            return x 
开发者ID:microsoft,项目名称:DualLearning,代码行数:40,代码来源:nn.py

示例15: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_variables_initialized [as 别名]
def __init__(self, model, conf, model_path=None):
        self.model = model
        self.conf = conf

        print('Defining the session')
        sess_config = tf.ConfigProto()
        sess_config.allow_soft_placement = True
        sess_config.gpu_options.allow_growth = True
        self.sess = tf.Session(config = sess_config)
        self.sess.run(tf.global_variables_initializer())        
        try:
            self.sess.run(tf.assert_variables_initialized())
        except tf.errors.FailedPreconditionError:
            raise RuntimeError('Not all variables initialized')

        self.saver = tf.train.Saver(tf.global_variables())
        if model_path:
            print('Restoring model from: ' + str(model_path))
            self.saver.restore(self.sess, model_path)

        self.binary_opening_filter = sitk.BinaryMorphologicalOpeningImageFilter()
        self.binary_opening_filter.SetKernelRadius(1)

        self.binary_closing_filter = sitk.BinaryMorphologicalClosingImageFilter()
        self.binary_closing_filter.SetKernelRadius(1)

        self.erosion_filter = sitk.BinaryErodeImageFilter()
        self.erosion_filter.SetKernelRadius(1)

        self.dilation_filter = sitk.BinaryDilateImageFilter()
        self.dilation_filter.SetKernelRadius(1) 
开发者ID:mahendrakhened,项目名称:Automated-Cardiac-Segmentation-and-Disease-Diagnosis,代码行数:33,代码来源:test_utils.py


注:本文中的tensorflow.assert_variables_initialized方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。