当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.assert_rank方法代码示例

本文整理汇总了Python中tensorflow.assert_rank方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.assert_rank方法的具体用法?Python tensorflow.assert_rank怎么用?Python tensorflow.assert_rank使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.assert_rank方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: assert_scalar

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_rank [as 别名]
def assert_scalar(tensor, name):
    """
    Whether the `tensor` is a scalar (0-D tensor).

    :param tensor: A Tensor to be checked.
    :param name: The name of `tensor` for error message.

    :return: The checked tensor.
    """
    static_shape = tensor.get_shape()
    shape_err_msg = name + " should be a scalar (0-D tensor)."
    if static_shape and (static_shape.ndims >= 1):
        raise ValueError(shape_err_msg)
    else:
        _assert_shape_op = tf.assert_rank(tensor, 0, message=shape_err_msg)
        with tf.control_dependencies([_assert_shape_op]):
            tensor = tf.identity(tensor)
        return tensor 
开发者ID:thu-ml,项目名称:zhusuan,代码行数:20,代码来源:utils.py

示例2: tokens_to_bytes

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_rank [as 别名]
def tokens_to_bytes(tokens):
  """Given a sequence of strings, map to sequence of bytes.

  Args:
    tokens: A tf.string tensor

  Returns:
    A tensor of shape words.shape + [bytes_per_word] containing byte versions
    of each word.
  """
  bytes_per_word = DEFAULT_CHAR_MAXLEN
  with tf.device("/cpu:0"):
    tf.assert_rank(tokens, 1)
    shape = tf.shape(tokens)
    tf.logging.info(tokens)
    tokens_flat = tf.reshape(tokens, [-1])
    as_bytes_flat = tf.map_fn(
        fn=lambda x: _string_to_bytes(x, max_length=bytes_per_word),
        elems=tokens_flat,
        dtype=tf.int32,
        back_prop=False)
    tf.logging.info(as_bytes_flat)
    as_bytes = tf.reshape(as_bytes_flat, [shape[0], bytes_per_word])
  return as_bytes 
开发者ID:mlperf,项目名称:training_results_v0.5,代码行数:26,代码来源:vocab_utils.py

示例3: log_likelihood_sym

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_rank [as 别名]
def log_likelihood_sym(self, x_var, dist_info_vars):
        """
        Symbolic log likelihood log p(x) of the distribution

        Args:
            x_var (tf.Tensor): variable where to evaluate the log likelihood
            dist_info_vars (dict) : dict of distribution parameters as tf.Tensor

        Returns:
             (numpy array): log likelihood
        """
        means = dist_info_vars["mean"]
        log_stds = dist_info_vars["log_std"]

        # assert ranks
        tf.assert_rank(x_var, 2), tf.assert_rank(means, 2), tf.assert_rank(log_stds, 2)

        zs = (x_var - means) / tf.exp(log_stds)
        return - tf.reduce_sum(log_stds, reduction_indices=-1) - \
               0.5 * tf.reduce_sum(tf.square(zs), reduction_indices=-1) - \
               0.5 * self.dim * np.log(2 * np.pi) 
开发者ID:jonasrothfuss,项目名称:ProMP,代码行数:23,代码来源:diagonal_gaussian.py

示例4: fc_encoder

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_rank [as 别名]
def fc_encoder(inputs, hidden_units, dropout, scope=None):
    net = inputs
    with tf.variable_scope(scope, 'encoder', [inputs]):
        tf.assert_rank(inputs, 2)
        for layer_id, num_hidden_units in enumerate(hidden_units):
            with tf.variable_scope(
                    'layer_{}'.format(layer_id),
                    values=(net,)) as layer_scope:
                net = tf.contrib.layers.fully_connected(
                    net,
                    num_outputs=num_hidden_units,
                    scope=layer_scope)
                if dropout is not None:
                    net = slim.dropout(net)
                add_hidden_layer_summary(net)
        net = tf.identity(net, name='output')

    return net 
开发者ID:sebp,项目名称:tf_autoencoder,代码行数:20,代码来源:layers.py

示例5: tokens_to_bytes

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_rank [as 别名]
def tokens_to_bytes(tokens):
    """Given a sequence of strings, map to sequence of bytes.

  Args:
    tokens: A tf.string tensor

  Returns:
    A tensor of shape words.shape + [bytes_per_word] containing byte versions
    of each word.
  """
    bytes_per_word = DEFAULT_CHAR_MAXLEN
    with tf.device("/cpu:0"):
        tf.assert_rank(tokens, 1)
        shape = tf.shape(tokens)
        tf.logging.info(tokens)
        tokens_flat = tf.reshape(tokens, [-1])
        as_bytes_flat = tf.map_fn(
            fn=lambda x: _string_to_bytes(x, max_length=bytes_per_word),
            elems=tokens_flat,
            dtype=tf.int32,
            back_prop=False,
        )
        tf.logging.info(as_bytes_flat)
        as_bytes = tf.reshape(as_bytes_flat, [shape[0], bytes_per_word])
    return as_bytes 
开发者ID:NervanaSystems,项目名称:nlp-architect,代码行数:27,代码来源:vocab_utils.py

示例6: assert_positive_int32_scalar

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_rank [as 别名]
def assert_positive_int32_scalar(value, name):
    """
    Whether `value` is a integer(or 0-D `tf.int32` tensor) and positive.
    If `value` is the instance of built-in type, it will be checked directly.
    Otherwise, it will be converted to a `tf.int32` tensor and checked.

    :param value: The value to be checked.
    :param name: The name of `value` used in error message.

    :return: The checked value.
    """
    if isinstance(value, (int, float)):
        if isinstance(value, int) and value > 0:
            return value
        elif isinstance(value, float):
            raise TypeError(name + " must be integer")
        elif value <= 0:
            raise ValueError(name + " must be positive")
    else:
        try:
            tensor = tf.convert_to_tensor(value, tf.int32)
        except (TypeError, ValueError):
            raise TypeError(name + ' must be (convertible to) tf.int32')
        _assert_rank_op = tf.assert_rank(
            tensor, 0,
            message=name + " should be a scalar (0-D Tensor).")
        _assert_positive_op = tf.assert_greater(
            tensor, tf.constant(0, tf.int32),
            message=name + " must be positive")
        with tf.control_dependencies([_assert_rank_op,
                                      _assert_positive_op]):
            tensor = tf.identity(tensor)
        return tensor 
开发者ID:thu-ml,项目名称:zhusuan,代码行数:35,代码来源:utils.py

示例7: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_rank [as 别名]
def __init__(self,
                 logits,
                 n_experiments,
                 dtype=tf.int32,
                 group_ndims=0,
                 check_numerics=False,
                 **kwargs):
        self._logits = tf.convert_to_tensor(logits)
        param_dtype = assert_same_float_dtype(
            [(self._logits, 'Binomial.logits')])

        assert_dtype_is_int_or_float(dtype)

        sign_err_msg = "n_experiments must be positive"
        if isinstance(n_experiments, int):
            if n_experiments <= 0:
                raise ValueError(sign_err_msg)
            self._n_experiments = n_experiments
        else:
            try:
                n_experiments = tf.convert_to_tensor(n_experiments, tf.int32)
            except ValueError:
                raise TypeError('n_experiments must be int32')
            _assert_rank_op = tf.assert_rank(
                n_experiments, 0,
                message="n_experiments should be a scalar (0-D Tensor).")
            _assert_positive_op = tf.assert_greater(
                n_experiments, 0, message=sign_err_msg)
            with tf.control_dependencies([_assert_rank_op,
                                          _assert_positive_op]):
                self._n_experiments = tf.identity(n_experiments)

        self._check_numerics = check_numerics
        super(Binomial, self).__init__(
            dtype=dtype,
            param_dtype=param_dtype,
            is_continuous=False,
            is_reparameterized=False,
            group_ndims=group_ndims,
            **kwargs) 
开发者ID:thu-ml,项目名称:zhusuan,代码行数:42,代码来源:univariate.py

示例8: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_rank [as 别名]
def __init__(self,
                 dtype,
                 param_dtype,
                 is_continuous,
                 is_reparameterized,
                 use_path_derivative=False,
                 group_ndims=0,
                 **kwargs):
        if 'group_event_ndims' in kwargs:
            raise ValueError(
                "The argument `group_event_ndims` has been deprecated "
                "Please use `group_ndims` instead.")

        self._dtype = dtype
        self._param_dtype = param_dtype
        self._is_continuous = is_continuous
        self._is_reparameterized = is_reparameterized
        self._use_path_derivative = use_path_derivative
        if isinstance(group_ndims, int):
            if group_ndims < 0:
                raise ValueError("group_ndims must be non-negative.")
            self._group_ndims = group_ndims
        else:
            group_ndims = tf.convert_to_tensor(group_ndims, tf.int32)
            _assert_rank_op = tf.assert_rank(
                group_ndims, 0,
                message="group_ndims should be a scalar (0-D Tensor).")
            _assert_nonnegative_op = tf.assert_greater_equal(
                group_ndims, 0,
                message="group_ndims must be non-negative.")
            with tf.control_dependencies([_assert_rank_op,
                                          _assert_nonnegative_op]):
                self._group_ndims = tf.identity(group_ndims) 
开发者ID:thu-ml,项目名称:zhusuan,代码行数:35,代码来源:base.py

示例9: sample

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_rank [as 别名]
def sample(self, n_samples=None):
        """
        sample(n_samples=None)

        Return samples from the distribution. When `n_samples` is None (by
        default), one sample of shape ``batch_shape + value_shape`` is
        generated. For a scalar `n_samples`, the returned Tensor has a new
        sample dimension with size `n_samples` inserted at ``axis=0``, i.e.,
        the shape of samples is ``[n_samples] + batch_shape + value_shape``.

        :param n_samples: A 0-D `int32` Tensor or None. How many independent
            samples to draw from the distribution.
        :return: A Tensor of samples.
        """
        if n_samples is None:
            samples = self._sample(n_samples=1)
            return tf.squeeze(samples, axis=0)
        elif isinstance(n_samples, int):
            return self._sample(n_samples)
        else:
            n_samples = tf.convert_to_tensor(n_samples, dtype=tf.int32)
            _assert_rank_op = tf.assert_rank(
                n_samples, 0,
                message="n_samples should be a scalar (0-D Tensor).")
            with tf.control_dependencies([_assert_rank_op]):
                samples = self._sample(n_samples)
            return samples 
开发者ID:thu-ml,项目名称:zhusuan,代码行数:29,代码来源:base.py

示例10: add_modality

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_rank [as 别名]
def add_modality(self, input_data, input_size, bypass_docking=False):
    """
    Add a modality to EmbraceNet.
    Args:
      input_data: An input data to feed into EmbraceNet. Must be a 2-D tensor of shape [batch_size, input_size].
      input_size: The second dimension of input_data.
      bypass_docking: Bypass docking step, i.e., connect the input data directly to the embracement layer. If True, input_data must have a shape of [batch_size, embracement_size].
    """
    
    # check input data
    tf_assertions = []
    tf_assertions.append(tf.assert_rank(input_data, 2))
    tf_assertions.append(tf.assert_equal(tf.shape(input_data)[0], self.batch_size))
    with tf.control_dependencies(tf_assertions):
      input_data = tf.identity(input_data)
    
    
    with tf.variable_scope('embracenet'):
      # construct docking layer
      modality_index = len(self.graph.modalities)
      modality_graph = EmbraceNetObject()
      modality_feeds = EmbraceNetObject()
      
      with tf.variable_scope('docking/%d' % modality_index):
        docking_input = input_data
        
        if (bypass_docking):
          modality_graph.docking_output = docking_input
        else:
          docking_output = tf.layers.dense(docking_input, units=self.embracement_size, kernel_initializer=None, bias_initializer=None)
          docking_output = tf.nn.relu(docking_output)
          modality_graph.docking_output = docking_output
            
      
      # finalize
      self.graph.modalities.append(modality_graph)
      self.feeds.modalities.append(modality_feeds) 
开发者ID:idearibosome,项目名称:embracenet,代码行数:39,代码来源:embracenet.py

示例11: separable_conv

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_rank [as 别名]
def separable_conv(x, filters, kernel_size, activation):
  """Apply a depthwise separable 1d convolution."""
  tf.assert_rank(x, 3)
  net = tf.expand_dims(x, 2)
  net = tf.layers.separable_conv2d(
      net,
      filters=filters,
      kernel_size=(kernel_size, 1),
      padding='same',
      activation=activation)
  net = tf.squeeze(net, axis=2)
  return net 
开发者ID:mlperf,项目名称:training_results_v0.5,代码行数:14,代码来源:model.py

示例12: _assert_tensor_shape

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_rank [as 别名]
def _assert_tensor_shape(tensor, shape, display_name):
    """
    Check whether the tensor and another shape match in shape
    :param tensor: TF Tensor
    :param shape: Some array
    :param display_name: Name of tensor to print if assertions fail
    """
    assert tf.assert_rank(tensor, len(shape), message='{} has wrong rank'.format(display_name))

    tensor_shape = tensor.get_shape().as_list() if len(shape) else []

    wrong_dimension = [ten_dim for ten_dim, cor_dim in zip(tensor_shape, shape)
                       if cor_dim is not None and ten_dim != cor_dim]
    assert not wrong_dimension, \
        '{} has wrong shape.  Found {}'.format(display_name, tensor_shape) 
开发者ID:udacity,项目名称:CarND-Semantic-Segmentation,代码行数:17,代码来源:project_tests.py

示例13: test_rank_zero_tensor_raises_if_rank_too_small_static_rank

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_rank [as 别名]
def test_rank_zero_tensor_raises_if_rank_too_small_static_rank(self):
    with self.test_session():
      tensor = tf.constant(1, name="my_tensor")
      desired_rank = 1
      with self.assertRaisesRegexp(
          ValueError, "fail.*my_tensor.*must have rank 1"):
        with tf.control_dependencies(
            [tf.assert_rank(tensor, desired_rank, message="fail")]):
          tf.identity(tensor).eval() 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:11,代码来源:check_ops_test.py

示例14: test_rank_zero_tensor_raises_if_rank_too_small_dynamic_rank

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_rank [as 别名]
def test_rank_zero_tensor_raises_if_rank_too_small_dynamic_rank(self):
    with self.test_session():
      tensor = tf.placeholder(tf.float32, name="my_tensor")
      desired_rank = 1
      with tf.control_dependencies(
          [tf.assert_rank(tensor, desired_rank, message="fail")]):
        with self.assertRaisesOpError("fail.*my_tensor.*rank"):
          tf.identity(tensor).eval(feed_dict={tensor: 0}) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:10,代码来源:check_ops_test.py

示例15: test_rank_zero_tensor_doesnt_raise_if_rank_just_right_static_rank

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_rank [as 别名]
def test_rank_zero_tensor_doesnt_raise_if_rank_just_right_static_rank(self):
    with self.test_session():
      tensor = tf.constant(1, name="my_tensor")
      desired_rank = 0
      with tf.control_dependencies([tf.assert_rank(tensor, desired_rank)]):
        tf.identity(tensor).eval() 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:8,代码来源:check_ops_test.py


注:本文中的tensorflow.assert_rank方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。