本文整理汇总了Python中tensorflow.assert_non_negative方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.assert_non_negative方法的具体用法?Python tensorflow.assert_non_negative怎么用?Python tensorflow.assert_non_negative使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.assert_non_negative方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: bounds_unlabeled
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_non_negative [as 别名]
def bounds_unlabeled(lower: float,
upper: float,
tensor: tf.Tensor,
name: Optional[str] = None) -> tf.Tensor:
"""Checks the tensor elements fall in the given bounds.
Args:
lower: The lower bound.
upper: The upper bound.
tensor: The input tensor.
name: Optional op name.
Returns:
The input tensor.
"""
with tf.name_scope(name, 'check_bounds', [tensor]) as scope:
if FLAGS.tensorcheck_enable_checks:
lower_bound_op = tf.assert_non_negative(
tensor - lower, name='lower_bound')
upper_bound_op = tf.assert_non_positive(
tensor - upper, name='upper_bound')
with tf.control_dependencies([lower_bound_op, upper_bound_op]):
tensor = tf.identity(tensor, name=scope)
return tensor
示例2: test_raises_when_negative
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_non_negative [as 别名]
def test_raises_when_negative(self):
with self.test_session():
zoe = tf.constant([-1, -2], name="zoe")
with tf.control_dependencies([tf.assert_non_negative(zoe)]):
out = tf.identity(zoe)
with self.assertRaisesOpError("zoe"):
out.eval()
示例3: test_doesnt_raise_when_zero_and_positive
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_non_negative [as 别名]
def test_doesnt_raise_when_zero_and_positive(self):
with self.test_session():
lucas = tf.constant([0, 2], name="lucas")
with tf.control_dependencies([tf.assert_non_negative(lucas)]):
out = tf.identity(lucas)
out.eval()
示例4: test_empty_tensor_doesnt_raise
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_non_negative [as 别名]
def test_empty_tensor_doesnt_raise(self):
# A tensor is non-negative when it satisfies:
# For every element x_i in x, x_i >= 0
# and an empty tensor has no elements, so this is trivially satisfied.
# This is standard set theory.
with self.test_session():
empty = tf.constant([], name="empty")
with tf.control_dependencies([tf.assert_non_negative(empty)]):
out = tf.identity(empty)
out.eval()
示例5: five_crops
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_non_negative [as 别名]
def five_crops(image, crop_size):
""" Returns the central and four corner crops of `crop_size` from `image`. """
image_size = tf.shape(image)[:2]
crop_margin = tf.subtract(image_size, crop_size)
assert_size = tf.assert_non_negative(
crop_margin, message='Crop size must be smaller or equal to the image size.')
with tf.control_dependencies([assert_size]):
top_left = tf.floor_div(crop_margin, 2)
bottom_right = tf.add(top_left, crop_size)
center = image[top_left[0]:bottom_right[0], top_left[1]:bottom_right[1]]
top_left = image[:-crop_margin[0], :-crop_margin[1]]
top_right = image[:-crop_margin[0], crop_margin[1]:]
bottom_left = image[crop_margin[0]:, :-crop_margin[1]]
bottom_right = image[crop_margin[0]:, crop_margin[1]:]
return center, top_left, top_right, bottom_left, bottom_right
示例6: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_non_negative [as 别名]
def __init__(self, preprocess_fn = None):
# Create a single Session to run all image coding calls.
# All images must either be in the same format, or have their encoding method recorded.
# Initializes function that converts PNG to JPEG data.
self._png_data = tf.placeholder(dtype=tf.string)
self._decode_png = tf.image.decode_png(self._png_data)
self._png_to_jpeg = tf.image.encode_jpeg(self._decode_png, format='rgb', quality=100)
# Initializes function that decodes RGB JPEG data.
self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)
#
self._decode_image_data = tf.placeholder(dtype=tf.string)
image = tf.image.decode_image(self._decode_image_data, channels=3)
self._image_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)
self._array_image = tf.placeholder(shape=[None, None, None], dtype=tf.uint8)
self._encode_array_to_jpeg = tf.image.encode_jpeg(self._array_image, format='rgb', quality=100)
if preprocess_fn:
image.set_shape([None, None, 3])
self._decode_preprocessed_image = preprocess_fn(image)
assert self._decode_preprocessed_image.dtype == tf.uint8
le_255 = tf.assert_less_equal(self._decode_preprocessed_image, tf.constant(255, tf.uint8))
ge_0 = tf.assert_non_negative(self._decode_preprocessed_image)
with tf.control_dependencies([le_255, ge_0]):
format = 'grayscale' if self._decode_preprocessed_image.shape[-1] == 1 else 'rgb'
self._image_to_preprocessed_jpeg = tf.image.encode_jpeg(self._decode_preprocessed_image, format=format, quality=100)
self._image_preprocessed_shape = tf.shape(self._decode_preprocessed_image)
else:
self._image_to_preprocessed_jpeg = None
self._image_preprocessed_shape = None
示例7: _test_assertions
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_non_negative [as 别名]
def _test_assertions(inf_tensors, gen_tensors, eval_tensors):
"""Returns in-graph assertions for testing."""
observed, latents, divs, log_probs, elbo = inf_tensors
generated, sampled_latents = gen_tensors
eval_log_probs, = eval_tensors
# For RNN, we return None from infer_latents as an optimization.
if latents is None:
latents = sampled_latents
def _same_batch_and_sequence_size_asserts(t1, name1, t2, name2):
return [
tf.assert_equal(
util.batch_size_from_nested_tensors(t1),
util.batch_size_from_nested_tensors(t2),
message="Batch: " + name1 + " vs " + name2),
tf.assert_equal(
util.sequence_size_from_nested_tensors(t1),
util.sequence_size_from_nested_tensors(t2),
message="Steps: " + name1 + " vs " + name2),
]
def _same_shapes(nested1, nested2):
return snt.nest.flatten(snt.nest.map(
lambda t1, t2: tf.assert_equal(
tf.shape(t1), tf.shape(t2),
message="Shapes: " + t1.name + " vs " + t2.name),
nested1, nested2))
def _all_same_batch_and_sequence_sizes(nested):
batch_size = util.batch_size_from_nested_tensors(nested)
sequence_size = util.sequence_size_from_nested_tensors(nested)
return [
tf.assert_equal(tf.shape(tensor)[0], batch_size,
message="Batch: " + tensor.name)
for tensor in snt.nest.flatten(nested)
] + [
tf.assert_equal(tf.shape(tensor)[1], sequence_size,
message="Steps: " + tensor.name)
for tensor in snt.nest.flatten(nested)
]
assertions = [
tf.assert_non_negative(divs),
tf.assert_non_positive(log_probs),
] + _same_shapes(
(log_probs, log_probs, observed, latents),
(divs, eval_log_probs, generated, sampled_latents)
) + _all_same_batch_and_sequence_sizes(
(observed, latents, divs)
) + _all_same_batch_and_sequence_sizes(
(generated, sampled_latents)
)
vars_ = tf.trainable_variables()
grads = tf.gradients(-elbo, vars_)
for (var, grad) in zip(vars_, grads):
assertions.append(tf.check_numerics(grad, "Gradient for " + var.name))
return assertions
示例8: op
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_non_negative [as 别名]
def op(name,
images,
max_outputs=3,
display_name=None,
description=None,
collections=None):
"""Create an image summary op for use in a TensorFlow graph.
Arguments:
name: A unique name for the generated summary node.
images: A `Tensor` representing pixel data with shape `[k, w, h, c]`,
where `k` is the number of images, `w` and `h` are the width and
height of the images, and `c` is the number of channels, which
should be 1, 3, or 4. Any of the dimensions may be statically
unknown (i.e., `None`).
max_outputs: Optional `int` or rank-0 integer `Tensor`. At most this
many images will be emitted at each step. When more than
`max_outputs` many images are provided, the first `max_outputs` many
images will be used and the rest silently discarded.
display_name: Optional name for this summary in TensorBoard, as a
constant `str`. Defaults to `name`.
description: Optional long-form description for this summary, as a
constant `str`. Markdown is supported. Defaults to empty.
collections: Optional list of graph collections keys. The new
summary op is added to these collections. Defaults to
`[Graph Keys.SUMMARIES]`.
Returns:
A TensorFlow summary op.
"""
if display_name is None:
display_name = name
summary_metadata = metadata.create_summary_metadata(
display_name=display_name, description=description)
with tf.name_scope(name), \
tf.control_dependencies([tf.assert_rank(images, 4),
tf.assert_type(images, tf.uint8),
tf.assert_non_negative(max_outputs)]):
limited_images = images[:max_outputs]
encoded_images = tf.map_fn(tf.image.encode_png, limited_images,
dtype=tf.string,
name='encode_each_image')
image_shape = tf.shape(images)
dimensions = tf.stack([tf.as_string(image_shape[1], name='width'),
tf.as_string(image_shape[2], name='height')],
name='dimensions')
tensor = tf.concat([dimensions, encoded_images], axis=0)
return tf.summary.tensor_summary(name='image_summary',
tensor=tensor,
collections=collections,
summary_metadata=summary_metadata)
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:53,代码来源:summary.py