当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.assert_less_equal方法代码示例

本文整理汇总了Python中tensorflow.assert_less_equal方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.assert_less_equal方法的具体用法?Python tensorflow.assert_less_equal怎么用?Python tensorflow.assert_less_equal使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.assert_less_equal方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: replace

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_less_equal [as 别名]
def replace(self, episodes, length, rows=None):
    """Replace full episodes.

    Args:
      episodes: Tuple of transition quantities with batch and time dimensions.
      length: Batch of sequence lengths.
      rows: Episodes to replace, defaults to all.

    Returns:
      Operation.
    """
    rows = tf.range(self._capacity) if rows is None else rows
    assert rows.shape.ndims == 1
    assert_capacity = tf.assert_less(
        rows, self._capacity, message='capacity exceeded')
    with tf.control_dependencies([assert_capacity]):
      assert_max_length = tf.assert_less_equal(
          length, self._max_length, message='max length exceeded')
    replace_ops = []
    with tf.control_dependencies([assert_max_length]):
      for buffer_, elements in zip(self._buffers, episodes):
        replace_op = tf.scatter_update(buffer_, rows, elements)
        replace_ops.append(replace_op)
    with tf.control_dependencies(replace_ops):
      return tf.scatter_update(self._length, rows, length) 
开发者ID:utra-robosoccer,项目名称:soccer-matlab,代码行数:27,代码来源:memory.py

示例2: __call__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_less_equal [as 别名]
def __call__(self, batch_size):
    """Reads `batch_size` data.

    Args:
      batch_size: Tensor of type `int32`. Batch size of the data to be
        retrieved from the dataset. `batch_size` should be less than or
        equal to the number of examples in the dataset.

    Returns:
       Read data, a list of Tensors with batch size equal to `batch_size`.
    """
    check_size = tf.assert_less_equal(
        batch_size,
        tf.convert_to_tensor(self._num_examples, dtype=tf.int32),
        message='Data set read failure, batch_size > num_examples.'
    )
    with tf.control_dependencies([check_size]):
      self._indices = tf.random.shuffle(
          tf.range(self._num_examples, dtype=tf.int32))
      return _extract_data(self._dataset, self._indices[:batch_size]) 
开发者ID:tensorflow,项目名称:kfac,代码行数:22,代码来源:data_reader_alt.py

示例3: __call__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_less_equal [as 别名]
def __call__(self, batch_size):
    """Reads `batch_size` data.

    Args:
      batch_size: Tensor of type `int32`, batch size of the data to be
        retrieved from the dataset. `batch_size` should be less than or
        equal to `max_batch_size`.

    Returns:
       Read data, An iterable of tensors with batch size equal to `batch_size`.
    """
    check_size = tf.assert_less_equal(
        batch_size,
        tf.convert_to_tensor(self._max_batch_size, dtype=tf.int32),
        message='Data set read failure, Batch size greater than max allowed.'
    )
    with tf.control_dependencies([check_size]):
      return _slice_data(self._dataset, batch_size) 
开发者ID:tensorflow,项目名称:kfac,代码行数:20,代码来源:data_reader.py

示例4: _init_clusters_random

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_less_equal [as 别名]
def _init_clusters_random(self):
    """Does random initialization of clusters.

    Returns:
      Tensor of randomly initialized clusters.
    """
    num_data = tf.add_n([tf.shape(inp)[0] for inp in self._inputs])
    # Note that for mini-batch k-means, we should ensure that the batch size of
    # data used during initialization is sufficiently large to avoid duplicated
    # clusters.
    with tf.control_dependencies(
        [tf.assert_less_equal(self._num_clusters, num_data)]):
      indices = tf.random_uniform(tf.reshape(self._num_clusters, [-1]),
                                  minval=0,
                                  maxval=tf.cast(num_data, tf.int64),
                                  seed=self._random_seed,
                                  dtype=tf.int64)
      clusters_init = embedding_lookup(self._inputs, indices,
                                       partition_strategy='div')
      return clusters_init 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:22,代码来源:clustering_ops.py

示例5: _init_clusters_random

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_less_equal [as 别名]
def _init_clusters_random(data, num_clusters, random_seed):
  """Does random initialization of clusters.

  Args:
    data: a list of Tensors with a matrix of data, each row is an example.
    num_clusters: an integer with the number of clusters.
    random_seed: Seed for PRNG used to initialize seeds.

  Returns:
    A Tensor with num_clusters random rows of data.
  """
  assert isinstance(data, list)
  num_data = tf.add_n([tf.shape(inp)[0] for inp in data])
  with tf.control_dependencies([tf.assert_less_equal(num_clusters, num_data)]):
    indices = tf.random_uniform([num_clusters],
                                minval=0,
                                maxval=tf.cast(num_data, tf.int64),
                                seed=random_seed,
                                dtype=tf.int64)
  indices = tf.cast(indices, tf.int32) % num_data
  clusters_init = embedding_lookup(data, indices, partition_strategy='div')
  return clusters_init 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:24,代码来源:gmm_ops.py

示例6: replace

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_less_equal [as 别名]
def replace(self, episodes, length, rows=None):
    """Replace full episodes.

    Args:
      episodes: Tuple of transition quantities with batch and time dimensions.
      length: Batch of sequence lengths.
      rows: Episodes to replace, defaults to all.

    Returns:
      Operation.
    """
    rows = tf.range(self._capacity) if rows is None else rows
    assert rows.shape.ndims == 1
    assert_capacity = tf.assert_less(
        rows, self._capacity, message='capacity exceeded')
    with tf.control_dependencies([assert_capacity]):
      assert_max_length = tf.assert_less_equal(
          length, self._max_length, message='max length exceeded')
    with tf.control_dependencies([assert_max_length]):
      replace_ops = tools.nested.map(
          lambda var, val: tf.scatter_update(var, rows, val),
          self._buffers, episodes, flatten=True)
    with tf.control_dependencies(replace_ops):
      return tf.scatter_update(self._length, rows, length) 
开发者ID:google-research,项目名称:batch-ppo,代码行数:26,代码来源:memory.py

示例7: _preprocess_for_inception

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_less_equal [as 别名]
def _preprocess_for_inception(images):
  """Preprocess images for inception.

  Args:
    images: images minibatch. Shape [batch size, width, height,
      channels]. Values are in [0..255].

  Returns:
    preprocessed_images
  """

  images = tf.cast(images, tf.float32)

  # tfgan_eval.preprocess_image function takes values in [0, 255]
  with tf.control_dependencies([tf.assert_greater_equal(images, 0.0),
                                tf.assert_less_equal(images, 255.0)]):
    images = tf.identity(images)

  preprocessed_images = tf.map_fn(
    fn=_TFGAN.preprocess_image,
    elems=images,
    back_prop=False)

  return preprocessed_images 
开发者ID:LoSealL,项目名称:VideoSuperResolution,代码行数:26,代码来源:GAN.py

示例8: _project_perturbation

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_less_equal [as 别名]
def _project_perturbation(perturbation, epsilon, input_image):
    """Project `perturbation` onto L-infinity ball of radius `epsilon`."""
    # Ensure inputs are in the correct range
    with tf.control_dependencies([
        tf.assert_less_equal(input_image, 1.0),
        tf.assert_greater_equal(input_image, 0.0)
    ]):
        clipped_perturbation = tf.clip_by_value(
            perturbation, -epsilon, epsilon)
        new_image = tf.clip_by_value(
            input_image + clipped_perturbation, 0., 1.)
        return new_image - input_image 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:14,代码来源:attacks_tf.py

示例9: scale_to_inception_range

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_less_equal [as 别名]
def scale_to_inception_range(image):
  """Scales an image in the range [0,1] to [-1,1] as expected by inception."""
  # Assert that incoming images have been properly scaled to [0,1].
  with tf.control_dependencies(
      [tf.assert_less_equal(tf.reduce_max(image), 1.),
       tf.assert_greater_equal(tf.reduce_min(image), 0.)]):
    image = tf.subtract(image, 0.5)
    image = tf.multiply(image, 2.0)
    return image 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:11,代码来源:preprocessing.py

示例10: new_mean_squared

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_less_equal [as 别名]
def new_mean_squared(grad_vec, decay, ms):
  """Calculates the new accumulated mean squared of the gradient.

  Args:
    grad_vec: the vector for the current gradient
    decay: the decay term
    ms: the previous mean_squared value

  Returns:
    the new mean_squared value
  """
  decay_size = decay.get_shape().num_elements()
  decay_check_ops = [
      tf.assert_less_equal(decay, 1., summarize=decay_size),
      tf.assert_greater_equal(decay, 0., summarize=decay_size)]

  with tf.control_dependencies(decay_check_ops):
    grad_squared = tf.square(grad_vec)

  # If the previous mean_squared is the 0 vector, don't use the decay and just
  # return the full grad_squared. This should only happen on the first timestep.
  decay = tf.cond(tf.reduce_all(tf.equal(ms, 0.)),
                  lambda: tf.zeros_like(decay, dtype=tf.float32), lambda: decay)

  # Update the running average of squared gradients.
  epsilon = 1e-12
  return (1. - decay) * (grad_squared + epsilon) + decay * ms 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:29,代码来源:utils.py

示例11: test_doesnt_raise_when_equal

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_less_equal [as 别名]
def test_doesnt_raise_when_equal(self):
    with self.test_session():
      small = tf.constant([1, 2], name="small")
      with tf.control_dependencies([tf.assert_less_equal(small, small)]):
        out = tf.identity(small)
      out.eval() 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:8,代码来源:check_ops_test.py

示例12: test_raises_when_greater

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_less_equal [as 别名]
def test_raises_when_greater(self):
    with self.test_session():
      small = tf.constant([1, 2], name="small")
      big = tf.constant([3, 4], name="big")
      with tf.control_dependencies(
          [tf.assert_less_equal(big, small, message="fail")]):
        out = tf.identity(small)
      with self.assertRaisesOpError("fail.*big.*small"):
        out.eval() 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:11,代码来源:check_ops_test.py

示例13: test_doesnt_raise_when_less_equal

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_less_equal [as 别名]
def test_doesnt_raise_when_less_equal(self):
    with self.test_session():
      small = tf.constant([1, 2], name="small")
      big = tf.constant([3, 2], name="big")
      with tf.control_dependencies([tf.assert_less_equal(small, big)]):
        out = tf.identity(small)
      out.eval() 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:9,代码来源:check_ops_test.py

示例14: test_doesnt_raise_when_less_equal_and_broadcastable_shapes

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_less_equal [as 别名]
def test_doesnt_raise_when_less_equal_and_broadcastable_shapes(self):
    with self.test_session():
      small = tf.constant([1], name="small")
      big = tf.constant([3, 1], name="big")
      with tf.control_dependencies([tf.assert_less_equal(small, big)]):
        out = tf.identity(small)
      out.eval() 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:9,代码来源:check_ops_test.py

示例15: test_raises_when_less_equal_but_non_broadcastable_shapes

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import assert_less_equal [as 别名]
def test_raises_when_less_equal_but_non_broadcastable_shapes(self):
    with self.test_session():
      small = tf.constant([1, 1, 1], name="small")
      big = tf.constant([3, 1], name="big")
      with self.assertRaisesRegexp(ValueError, "must be"):
        with tf.control_dependencies([tf.assert_less_equal(small, big)]):
          out = tf.identity(small)
        out.eval() 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:10,代码来源:check_ops_test.py


注:本文中的tensorflow.assert_less_equal方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。