本文整理汇总了Python中tensorflow.as_dtype方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.as_dtype方法的具体用法?Python tensorflow.as_dtype怎么用?Python tensorflow.as_dtype使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.as_dtype方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def __init__(self, model, dtypestr='float32'):
"""
:param model: An instance of the cleverhans.model.Model class.
:param back: The backend to use. Inherited from AttackBase class.
:param dtypestr: datatype of the input data samples and crafted
adversarial attacks.
"""
# Validate the input arguments.
if dtypestr != 'float32' and dtypestr != 'float64':
raise ValueError("Unexpected input for argument dtypestr.")
import tensorflow as tf
tfe = tf.contrib.eager
self.tf_dtype = tf.as_dtype(dtypestr)
self.np_dtype = np.dtype(dtypestr)
if not isinstance(model, Model):
raise ValueError("The model argument should be an instance of"
" the cleverhans.model.Model class.")
# Prepare attributes
self.model = model
self.dtypestr = dtypestr
示例2: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def __init__(self,
dtype,
batch_shape=None,
value_shape=None,
group_ndims=0,
is_continuous=None,
**kwargs):
dtype = tf.float32 if dtype is None else tf.as_dtype(dtype).base_dtype
self.explicit_batch_shape = tf.TensorShape(batch_shape)
self.explicit_value_shape = tf.TensorShape(value_shape)
if is_continuous is None:
is_continuous = dtype.is_floating
super(Empirical, self).__init__(
dtype=dtype,
param_dtype=None,
is_continuous=is_continuous,
is_reparameterized=False,
use_path_derivative=False,
group_ndims=group_ndims,
**kwargs)
示例3: _legacy_output_transform_func
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def _legacy_output_transform_func(*expr, out_mul=1.0, out_add=0.0, out_shrink=1, out_dtype=None):
if out_mul != 1.0:
expr = [x * out_mul for x in expr]
if out_add != 0.0:
expr = [x + out_add for x in expr]
if out_shrink > 1:
ksize = [1, 1, out_shrink, out_shrink]
expr = [tf.nn.avg_pool(x, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW") for x in expr]
if out_dtype is not None:
if tf.as_dtype(out_dtype).is_integer:
expr = [tf.round(x) for x in expr]
expr = [tf.saturate_cast(x, out_dtype) for x in expr]
return expr
示例4: get_initializer
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def get_initializer(initializer, initializer_gain):
tfdtype = tf.as_dtype(dtype.floatx())
if initializer == "uniform":
max_val = initializer_gain
return tf.random_uniform_initializer(-max_val, max_val, dtype=tfdtype)
elif initializer == "normal":
return tf.random_normal_initializer(0.0, initializer_gain, dtype=tfdtype)
elif initializer == "normal_unit_scaling":
return tf.variance_scaling_initializer(initializer_gain,
mode="fan_avg",
distribution="normal",
dtype=tfdtype)
elif initializer == "uniform_unit_scaling":
return tf.variance_scaling_initializer(initializer_gain,
mode="fan_avg",
distribution="uniform",
dtype=tfdtype)
else:
tf.logging.warn("Unrecognized initializer: %s" % initializer)
tf.logging.warn("Return to default initializer: glorot_uniform_initializer")
return tf.glorot_uniform_initializer(dtype=tfdtype)
示例5: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def __init__(self, shape, dtype):
"""Creates a schema for a variable used in policy.
Allows for symbolic definition of shape. Shape can consist of integers, as well as
strings BATCH and TIMESTEPS. This is taken advantage of in the optimizers, to
create placeholders or variables that asynchronously prefetch the inputs.
Parameters
----------
shape: [int, np.int64, np.int32, or str]
shape of the variable, e.g. [12, 4], [BATCH, 12], [BATCH, 'timestep']
dtype:
tensorflow type of the variable, e.g. tf.float32, tf.int32
"""
assert all(isinstance(s, (int, np.int64, np.int32)) or s in [BATCH, TIMESTEPS] for s in shape), 'Bad shape %s' % shape
self.shape = shape
self.dtype = tf.as_dtype(dtype)
示例6: read_summaries
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def read_summaries(event_dir, event_file_pattern="events.out.tfevents.*"):
"""Reads summaries from TensorFlow event files.
Args:
event_dir: Directory containing event files.
event_file_pattern: The pattern to look for event files.
Returns:
A list of tuple (step, dict of summaries), sorted by step.
"""
if not tf.io.gfile.exists(event_dir):
return []
summaries = collections.defaultdict(dict)
for event_file in tf.io.gfile.glob(os.path.join(event_dir, event_file_pattern)):
for event in tf.compat.v1.train.summary_iterator(event_file):
if not event.HasField("summary"):
continue
for value in event.summary.value:
tensor_proto = value.tensor
tensor = tf.io.parse_tensor(
tensor_proto.SerializeToString(), tf.as_dtype(tensor_proto.dtype))
summaries[event.step][value.tag] = tf.get_static_value(tensor)
return list(sorted(summaries.items(), key=lambda x: x[0]))
示例7: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def __init__(self,
mean_initializer=tf.random_normal_initializer(stddev=0.1),
stddev_initializer=tf.random_uniform_initializer(
minval=1e-5, maxval=0.1),
mean_regularizer=None,
stddev_regularizer=None,
mean_constraint=None,
stddev_constraint=positive(),
seed=None,
dtype=tf.float32):
"""Constructs the initializer."""
super(TrainableNormal, self).__init__()
self.mean_initializer = mean_initializer
self.stddev_initializer = stddev_initializer
self.mean_regularizer = mean_regularizer
self.stddev_regularizer = stddev_regularizer
self.mean_constraint = mean_constraint
self.stddev_constraint = stddev_constraint
self.seed = seed
self.dtype = tf.as_dtype(dtype)
示例8: build
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def build(self, shape, dtype=None, add_variable_fn=None):
"""Builds the initializer, with the variables captured by the caller."""
if dtype is None:
dtype = self.dtype
self.shape = shape
self.dtype = tf.as_dtype(dtype)
self.mean = add_variable_fn(
'mean',
shape=shape,
initializer=self.mean_initializer,
regularizer=self.mean_regularizer,
constraint=self.mean_constraint,
dtype=dtype,
trainable=True)
self.stddev = add_variable_fn(
'stddev',
shape=shape,
initializer=self.stddev_initializer,
regularizer=self.stddev_regularizer,
constraint=self.stddev_constraint,
dtype=dtype,
trainable=True)
self.built = True
示例9: fprop
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def fprop(self, x, **kwargs):
del kwargs
with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE):
w1 = tf.constant([[1.5, .3], [-2, 0.3]],
dtype=tf.as_dtype(x.dtype))
w2 = tf.constant([[-2.4, 1.2], [0.5, -2.3]],
dtype=tf.as_dtype(x.dtype))
h1 = tf.nn.sigmoid(tf.matmul(x, w1))
res = tf.matmul(h1, w2)
return {self.O_FEATURES: [h1, res],
self.O_LOGITS: res,
self.O_PROBS: tf.nn.softmax(res)}
示例10: fprop
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def fprop(self, x, **kwargs):
del kwargs
with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE):
w1 = tf.constant([[1.5, .3], [-2, 0.3]],
dtype=tf.as_dtype(x.dtype))
w2 = tf.constant([[-2.4, 1.2], [0.5, -2.3]],
dtype=tf.as_dtype(x.dtype))
h1 = tf.nn.sigmoid(tf.matmul(x, w1))
res = tf.matmul(h1, w2)
return {self.O_LOGITS: res,
self.O_PROBS: tf.nn.softmax(res)}
示例11: fprop
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def fprop(self, x, **kwargs):
del kwargs
with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE):
w1 = tf.constant(
[[1.5, .3], [-2, 0.3]], dtype=tf.as_dtype(x.dtype))
w2 = tf.constant(
[[-2.4, 1.2], [0.5, -2.3]], dtype=tf.as_dtype(x.dtype))
h1 = tf.nn.sigmoid(tf.matmul(x, w1))
res = tf.matmul(h1, w2)
return {self.O_LOGITS: res, self.O_PROBS: tf.nn.softmax(res)}
示例12: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def __init__(self, dtype=tf.float32):
self.dtype = tf.as_dtype(dtype)
示例13: getTRTType
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def getTRTType(tensor):
if tf.as_dtype(tensor.dtype) == tf.float32:
return 0
if tf.as_dtype(tensor.dtype) == tf.float16:
return 1
if tf.as_dtype(tensor.dtype) == tf.int8:
return 2
if tf.as_dtype(tensor.dtype) == tf.int32:
return 3
print("Tensor data type of %s is not supported in TensorRT"%(tensor.dtype))
sys.exit();
示例14: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def __init__(self,
M: Tuple[int, int] = (1000, 2000),
dtype: type = np.float32) -> None:
self.__M = M
self.__dtype = tf.as_dtype(dtype)
示例15: random
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def random(cls,
priorU: List[Distribution],
likelihood: Likelihood,
M: Tuple[int, ...],
K: int,
dtype: tf.DType,
phase: Phase,
stopCriterion,
noiseUniformity: NoiseUniformity = HOMOGENEOUS,
transform: bool = False) -> "TensorFactorisation":
# initialize U
dtype = tf.as_dtype(dtype)
zero = tf.constant(0., dtype=dtype)
one = tf.constant(1., dtype=dtype)
normal = tf.distributions.Normal(loc=zero, scale=one)
F = len(M)
U = []
for f in range(F):
if priorU[f].nonNegative:
UfInit = tf.abs(normal.sample(sample_shape=(K, M[f])))
else:
UfInit = normal.sample(sample_shape=(K, M[f]))
U.append(UfInit)
# instantiate
tefa = TensorFactorisation(U=U,
priorU=priorU,
likelihood=likelihood,
dtype=dtype,
phase=phase,
transform=transform,
noiseUniformity=noiseUniformity,
stopCriterion=stopCriterion)
return(tefa)