当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.as_dtype方法代码示例

本文整理汇总了Python中tensorflow.as_dtype方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.as_dtype方法的具体用法?Python tensorflow.as_dtype怎么用?Python tensorflow.as_dtype使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.as_dtype方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def __init__(self, model, dtypestr='float32'):
        """
        :param model: An instance of the cleverhans.model.Model class.
        :param back: The backend to use. Inherited from AttackBase class.
        :param dtypestr: datatype of the input data samples and crafted
                        adversarial attacks.
        """
        # Validate the input arguments.
        if dtypestr != 'float32' and dtypestr != 'float64':
            raise ValueError("Unexpected input for argument dtypestr.")
        import tensorflow as tf
        tfe = tf.contrib.eager
        self.tf_dtype = tf.as_dtype(dtypestr)
        self.np_dtype = np.dtype(dtypestr)

        if not isinstance(model, Model):
            raise ValueError("The model argument should be an instance of"
                             " the cleverhans.model.Model class.")
        # Prepare attributes
        self.model = model
        self.dtypestr = dtypestr 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:23,代码来源:attacks_tfe.py

示例2: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def __init__(self,
                 dtype,
                 batch_shape=None,
                 value_shape=None,
                 group_ndims=0,
                 is_continuous=None,
                 **kwargs):
        dtype = tf.float32 if dtype is None else tf.as_dtype(dtype).base_dtype

        self.explicit_batch_shape = tf.TensorShape(batch_shape)

        self.explicit_value_shape = tf.TensorShape(value_shape)

        if is_continuous is None:
            is_continuous = dtype.is_floating

        super(Empirical, self).__init__(
            dtype=dtype,
            param_dtype=None,
            is_continuous=is_continuous,
            is_reparameterized=False,
            use_path_derivative=False,
            group_ndims=group_ndims,
            **kwargs) 
开发者ID:thu-ml,项目名称:zhusuan,代码行数:26,代码来源:special.py

示例3: _legacy_output_transform_func

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def _legacy_output_transform_func(*expr, out_mul=1.0, out_add=0.0, out_shrink=1, out_dtype=None):
    if out_mul != 1.0:
        expr = [x * out_mul for x in expr]

    if out_add != 0.0:
        expr = [x + out_add for x in expr]

    if out_shrink > 1:
        ksize = [1, 1, out_shrink, out_shrink]
        expr = [tf.nn.avg_pool(x, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW") for x in expr]

    if out_dtype is not None:
        if tf.as_dtype(out_dtype).is_integer:
            expr = [tf.round(x) for x in expr]
        expr = [tf.saturate_cast(x, out_dtype) for x in expr]
    return expr 
开发者ID:produvia,项目名称:ai-platform,代码行数:18,代码来源:network.py

示例4: get_initializer

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def get_initializer(initializer, initializer_gain):
    tfdtype = tf.as_dtype(dtype.floatx())

    if initializer == "uniform":
        max_val = initializer_gain
        return tf.random_uniform_initializer(-max_val, max_val, dtype=tfdtype)
    elif initializer == "normal":
        return tf.random_normal_initializer(0.0, initializer_gain, dtype=tfdtype)
    elif initializer == "normal_unit_scaling":
        return tf.variance_scaling_initializer(initializer_gain,
                                               mode="fan_avg",
                                               distribution="normal",
                                               dtype=tfdtype)
    elif initializer == "uniform_unit_scaling":
        return tf.variance_scaling_initializer(initializer_gain,
                                               mode="fan_avg",
                                               distribution="uniform",
                                               dtype=tfdtype)
    else:
        tf.logging.warn("Unrecognized initializer: %s" % initializer)
        tf.logging.warn("Return to default initializer: glorot_uniform_initializer")
        return tf.glorot_uniform_initializer(dtype=tfdtype) 
开发者ID:bzhangGo,项目名称:zero,代码行数:24,代码来源:initializer.py

示例5: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def __init__(self, shape, dtype):
        """Creates a schema for a variable used in policy.
        Allows for symbolic definition of shape. Shape can consist of integers, as well as
        strings BATCH and TIMESTEPS. This is taken advantage of in the optimizers, to
        create placeholders or variables that asynchronously prefetch the inputs.

        Parameters
        ----------
        shape: [int, np.int64, np.int32, or str]
            shape of the variable, e.g. [12, 4], [BATCH, 12], [BATCH, 'timestep']
        dtype:
            tensorflow type of the variable, e.g. tf.float32, tf.int32
        """
        assert all(isinstance(s, (int, np.int64, np.int32)) or s in [BATCH, TIMESTEPS] for s in shape), 'Bad shape %s' % shape
        self.shape = shape
        self.dtype = tf.as_dtype(dtype) 
开发者ID:openai,项目名称:multi-agent-emergence-environments,代码行数:18,代码来源:variable_schema.py

示例6: read_summaries

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def read_summaries(event_dir, event_file_pattern="events.out.tfevents.*"):
  """Reads summaries from TensorFlow event files.

  Args:
    event_dir: Directory containing event files.
    event_file_pattern: The pattern to look for event files.

  Returns:
    A list of tuple (step, dict of summaries), sorted by step.
  """
  if not tf.io.gfile.exists(event_dir):
    return []
  summaries = collections.defaultdict(dict)
  for event_file in tf.io.gfile.glob(os.path.join(event_dir, event_file_pattern)):
    for event in tf.compat.v1.train.summary_iterator(event_file):
      if not event.HasField("summary"):
        continue
      for value in event.summary.value:
        tensor_proto = value.tensor
        tensor = tf.io.parse_tensor(
            tensor_proto.SerializeToString(), tf.as_dtype(tensor_proto.dtype))
        summaries[event.step][value.tag] = tf.get_static_value(tensor)
  return list(sorted(summaries.items(), key=lambda x: x[0])) 
开发者ID:OpenNMT,项目名称:OpenNMT-tf,代码行数:25,代码来源:misc.py

示例7: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def __init__(self,
               mean_initializer=tf.random_normal_initializer(stddev=0.1),
               stddev_initializer=tf.random_uniform_initializer(
                   minval=1e-5, maxval=0.1),
               mean_regularizer=None,
               stddev_regularizer=None,
               mean_constraint=None,
               stddev_constraint=positive(),
               seed=None,
               dtype=tf.float32):
    """Constructs the initializer."""
    super(TrainableNormal, self).__init__()
    self.mean_initializer = mean_initializer
    self.stddev_initializer = stddev_initializer
    self.mean_regularizer = mean_regularizer
    self.stddev_regularizer = stddev_regularizer
    self.mean_constraint = mean_constraint
    self.stddev_constraint = stddev_constraint
    self.seed = seed
    self.dtype = tf.as_dtype(dtype) 
开发者ID:mlperf,项目名称:training_results_v0.5,代码行数:22,代码来源:bayes.py

示例8: build

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def build(self, shape, dtype=None, add_variable_fn=None):
    """Builds the initializer, with the variables captured by the caller."""
    if dtype is None:
      dtype = self.dtype
    self.shape = shape
    self.dtype = tf.as_dtype(dtype)

    self.mean = add_variable_fn(
        'mean',
        shape=shape,
        initializer=self.mean_initializer,
        regularizer=self.mean_regularizer,
        constraint=self.mean_constraint,
        dtype=dtype,
        trainable=True)
    self.stddev = add_variable_fn(
        'stddev',
        shape=shape,
        initializer=self.stddev_initializer,
        regularizer=self.stddev_regularizer,
        constraint=self.stddev_constraint,
        dtype=dtype,
        trainable=True)
    self.built = True 
开发者ID:mlperf,项目名称:training_results_v0.5,代码行数:26,代码来源:bayes.py

示例9: fprop

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def fprop(self, x, **kwargs):
        del kwargs
        with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE):
            w1 = tf.constant([[1.5, .3], [-2, 0.3]],
                             dtype=tf.as_dtype(x.dtype))
            w2 = tf.constant([[-2.4, 1.2], [0.5, -2.3]],
                             dtype=tf.as_dtype(x.dtype))
        h1 = tf.nn.sigmoid(tf.matmul(x, w1))
        res = tf.matmul(h1, w2)
        return {self.O_FEATURES: [h1, res],
                self.O_LOGITS: res,
                self.O_PROBS: tf.nn.softmax(res)} 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:14,代码来源:test_defenses.py

示例10: fprop

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def fprop(self, x, **kwargs):
        del kwargs
        with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE):
            w1 = tf.constant([[1.5, .3], [-2, 0.3]],
                             dtype=tf.as_dtype(x.dtype))
            w2 = tf.constant([[-2.4, 1.2], [0.5, -2.3]],
                             dtype=tf.as_dtype(x.dtype))
        h1 = tf.nn.sigmoid(tf.matmul(x, w1))
        res = tf.matmul(h1, w2)
        return {self.O_LOGITS: res,
                self.O_PROBS: tf.nn.softmax(res)} 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:13,代码来源:test_attacks.py

示例11: fprop

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def fprop(self, x, **kwargs):
        del kwargs
        with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE):
            w1 = tf.constant(
                [[1.5, .3], [-2, 0.3]], dtype=tf.as_dtype(x.dtype))
            w2 = tf.constant(
                [[-2.4, 1.2], [0.5, -2.3]], dtype=tf.as_dtype(x.dtype))
        h1 = tf.nn.sigmoid(tf.matmul(x, w1))
        res = tf.matmul(h1, w2)
        return {self.O_LOGITS: res, self.O_PROBS: tf.nn.softmax(res)} 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:12,代码来源:test_attacks_tf.py

示例12: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def __init__(self, dtype=tf.float32):
        self.dtype = tf.as_dtype(dtype) 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:4,代码来源:tutorial_models.py

示例13: getTRTType

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def getTRTType(tensor):
    if tf.as_dtype(tensor.dtype) == tf.float32:
        return 0
    if tf.as_dtype(tensor.dtype) == tf.float16:
        return 1
    if tf.as_dtype(tensor.dtype) == tf.int8:
        return 2
    if tf.as_dtype(tensor.dtype) == tf.int32:
        return 3
    print("Tensor data type of %s is not supported in TensorRT"%(tensor.dtype))
    sys.exit(); 
开发者ID:aimuch,项目名称:iAI,代码行数:13,代码来源:dumpTFWts.py

示例14: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def __init__(self,
                 M: Tuple[int, int] = (1000, 2000),
                 dtype: type = np.float32) -> None:

        self.__M = M
        self.__dtype = tf.as_dtype(dtype) 
开发者ID:bethgelab,项目名称:decompose,代码行数:8,代码来源:random.py

示例15: random

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import as_dtype [as 别名]
def random(cls,
               priorU: List[Distribution],
               likelihood: Likelihood,
               M: Tuple[int, ...],
               K: int,
               dtype: tf.DType,
               phase: Phase,
               stopCriterion,
               noiseUniformity: NoiseUniformity = HOMOGENEOUS,
               transform: bool = False) -> "TensorFactorisation":

        # initialize U
        dtype = tf.as_dtype(dtype)
        zero = tf.constant(0., dtype=dtype)
        one = tf.constant(1., dtype=dtype)
        normal = tf.distributions.Normal(loc=zero, scale=one)
        F = len(M)
        U = []
        for f in range(F):
            if priorU[f].nonNegative:
                UfInit = tf.abs(normal.sample(sample_shape=(K, M[f])))
            else:
                UfInit = normal.sample(sample_shape=(K, M[f]))
            U.append(UfInit)

        # instantiate
        tefa = TensorFactorisation(U=U,
                                   priorU=priorU,
                                   likelihood=likelihood,
                                   dtype=dtype,
                                   phase=phase,
                                   transform=transform,
                                   noiseUniformity=noiseUniformity,
                                   stopCriterion=stopCriterion)
        return(tefa) 
开发者ID:bethgelab,项目名称:decompose,代码行数:37,代码来源:tensorFactorisation.py


注:本文中的tensorflow.as_dtype方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。