本文整理汇总了Python中tensorflow.argmax方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.argmax方法的具体用法?Python tensorflow.argmax怎么用?Python tensorflow.argmax使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.argmax方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: binary_refinement
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import argmax [as 别名]
def binary_refinement(sess,Best_X_adv,
X_adv, Y, ALPHA, ub, lb, model, dataset='cifar'):
num_samples = np.shape(X_adv)[0]
print(dataset)
if(dataset=="mnist"):
X_place = tf.placeholder(tf.float32, shape=[1, 1, 28, 28])
else:
X_place = tf.placeholder(tf.float32, shape=[1, 3, 32, 32])
pred = model(X_place)
for i in range(num_samples):
logits_op = sess.run(pred,feed_dict={X_place:X_adv[i:i+1,:,:,:]})
if(not np.argmax(logits_op) == np.argmax(Y[i,:])):
# Success, increase alpha
Best_X_adv[i,:,:,:] = X_adv[i,:,:,]
lb[i] = ALPHA[i,0]
else:
ub[i] = ALPHA[i,0]
ALPHA[i] = 0.5*(lb[i] + ub[i])
return ALPHA, Best_X_adv
示例2: model_argmax
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import argmax [as 别名]
def model_argmax(sess, x, predictions, samples, feed=None):
"""
Helper function that computes the current class prediction
:param sess: TF session
:param x: the input placeholder
:param predictions: the model's symbolic output
:param samples: numpy array with input samples (dims must match x)
:param feed: An optional dictionary that is appended to the feeding
dictionary before the session runs. Can be used to feed
the learning phase of a Keras model for instance.
:return: the argmax output of predictions, i.e. the current predicted class
"""
feed_dict = {x: samples}
if feed is not None:
feed_dict.update(feed)
probabilities = sess.run(predictions, feed_dict)
if samples.shape[0] == 1:
return np.argmax(probabilities)
else:
return np.argmax(probabilities, axis=1)
示例3: testTrainEvalWithReuse
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import argmax [as 别名]
def testTrainEvalWithReuse(self):
train_batch_size = 2
eval_batch_size = 1
train_height, train_width = 231, 231
eval_height, eval_width = 281, 281
num_classes = 1000
with self.test_session():
train_inputs = tf.random_uniform(
(train_batch_size, train_height, train_width, 3))
logits, _ = overfeat.overfeat(train_inputs)
self.assertListEqual(logits.get_shape().as_list(),
[train_batch_size, num_classes])
tf.get_variable_scope().reuse_variables()
eval_inputs = tf.random_uniform(
(eval_batch_size, eval_height, eval_width, 3))
logits, _ = overfeat.overfeat(eval_inputs, is_training=False,
spatial_squeeze=False)
self.assertListEqual(logits.get_shape().as_list(),
[eval_batch_size, 2, 2, num_classes])
logits = tf.reduce_mean(logits, [1, 2])
predictions = tf.argmax(logits, 1)
self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
示例4: testTrainEvalWithReuse
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import argmax [as 别名]
def testTrainEvalWithReuse(self):
train_batch_size = 2
eval_batch_size = 1
train_height, train_width = 224, 224
eval_height, eval_width = 300, 400
num_classes = 1000
with self.test_session():
train_inputs = tf.random_uniform(
(train_batch_size, train_height, train_width, 3))
logits, _ = alexnet.alexnet_v2(train_inputs)
self.assertListEqual(logits.get_shape().as_list(),
[train_batch_size, num_classes])
tf.get_variable_scope().reuse_variables()
eval_inputs = tf.random_uniform(
(eval_batch_size, eval_height, eval_width, 3))
logits, _ = alexnet.alexnet_v2(eval_inputs, is_training=False,
spatial_squeeze=False)
self.assertListEqual(logits.get_shape().as_list(),
[eval_batch_size, 4, 7, num_classes])
logits = tf.reduce_mean(logits, [1, 2])
predictions = tf.argmax(logits, 1)
self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
示例5: testTrainEvalWithReuse
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import argmax [as 别名]
def testTrainEvalWithReuse(self):
train_batch_size = 2
eval_batch_size = 1
train_height, train_width = 224, 224
eval_height, eval_width = 256, 256
num_classes = 1000
with self.test_session():
train_inputs = tf.random_uniform(
(train_batch_size, train_height, train_width, 3))
logits, _ = vgg.vgg_a(train_inputs)
self.assertListEqual(logits.get_shape().as_list(),
[train_batch_size, num_classes])
tf.get_variable_scope().reuse_variables()
eval_inputs = tf.random_uniform(
(eval_batch_size, eval_height, eval_width, 3))
logits, _ = vgg.vgg_a(eval_inputs, is_training=False,
spatial_squeeze=False)
self.assertListEqual(logits.get_shape().as_list(),
[eval_batch_size, 2, 2, num_classes])
logits = tf.reduce_mean(logits, [1, 2])
predictions = tf.argmax(logits, 1)
self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
示例6: testTrainEvalWithReuse
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import argmax [as 别名]
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 150, 150
num_classes = 1000
with self.test_session() as sess:
train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
inception.inception_resnet_v2(train_inputs, num_classes)
eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
logits, _ = inception.inception_resnet_v2(eval_inputs,
num_classes,
is_training=False,
reuse=True)
predictions = tf.argmax(logits, 1)
sess.run(tf.global_variables_initializer())
output = sess.run(predictions)
self.assertEquals(output.shape, (eval_batch_size,))
示例7: testTrainEvalWithReuse
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import argmax [as 别名]
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 150, 150
num_classes = 1000
train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
mobilenet_v1.mobilenet_v1(train_inputs, num_classes)
eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
logits, _ = mobilenet_v1.mobilenet_v1(eval_inputs, num_classes,
reuse=True)
predictions = tf.argmax(logits, 1)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
output = sess.run(predictions)
self.assertEquals(output.shape, (eval_batch_size,))
示例8: testTrainEvalWithReuse
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import argmax [as 别名]
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 150, 150
num_classes = 1000
with self.test_session() as sess:
train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
inception.inception_v4(train_inputs, num_classes)
eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
logits, _ = inception.inception_v4(eval_inputs,
num_classes,
is_training=False,
reuse=True)
predictions = tf.argmax(logits, 1)
sess.run(tf.global_variables_initializer())
output = sess.run(predictions)
self.assertEquals(output.shape, (eval_batch_size,))
示例9: testTrainEvalWithReuse
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import argmax [as 别名]
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 150, 150
num_classes = 1000
train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
inception.inception_v2(train_inputs, num_classes)
eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
logits, _ = inception.inception_v2(eval_inputs, num_classes, reuse=True)
predictions = tf.argmax(logits, 1)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
output = sess.run(predictions)
self.assertEquals(output.shape, (eval_batch_size,))
示例10: testTrainEvalWithReuse
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import argmax [as 别名]
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 150, 150
num_classes = 1000
train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
inception.inception_v3(train_inputs, num_classes)
eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
logits, _ = inception.inception_v3(eval_inputs, num_classes,
is_training=False, reuse=True)
predictions = tf.argmax(logits, 1)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
output = sess.run(predictions)
self.assertEquals(output.shape, (eval_batch_size,))
示例11: testTrainEvalWithReuse
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import argmax [as 别名]
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 224, 224
num_classes = 1000
train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
inception.inception_v1(train_inputs, num_classes)
eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
logits, _ = inception.inception_v1(eval_inputs, num_classes, reuse=True)
predictions = tf.argmax(logits, 1)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
output = sess.run(predictions)
self.assertEquals(output.shape, (eval_batch_size,))
示例12: sample_action
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import argmax [as 别名]
def sample_action(self, logits, sampling_dim,
act_dim, act_type, greedy=False):
"""Sample an action from a distribution."""
if self.env_spec.is_discrete(act_type):
if greedy:
act = tf.argmax(logits, 1)
else:
act = tf.reshape(tf.multinomial(logits, 1), [-1])
elif self.env_spec.is_box(act_type):
means = logits[:, :sampling_dim / 2]
std = logits[:, sampling_dim / 2:]
if greedy:
act = means
else:
batch_size = tf.shape(logits)[0]
act = means + std * tf.random_normal([batch_size, act_dim])
else:
assert False
return act
示例13: sigmoid_accuracy_one_hot
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import argmax [as 别名]
def sigmoid_accuracy_one_hot(logits, labels, weights_fn=None):
"""Calculate accuracy for a set, given one-hot labels and logits.
Args:
logits: Tensor of size [batch-size, o=1, p=1, num-classes]
labels: Tensor of size [batch-size, o=1, p=1, num-classes]
weights_fn: Function that takes in labels and weighs examples (unused)
Returns:
accuracy (scalar), weights
"""
with tf.variable_scope("sigmoid_accuracy_one_hot", values=[logits, labels]):
del weights_fn
predictions = tf.nn.sigmoid(logits)
labels = tf.argmax(labels, -1)
predictions = tf.argmax(predictions, -1)
_, accuracy = tf.metrics.accuracy(labels=labels, predictions=predictions)
return accuracy, tf.constant(1.0)
示例14: sigmoid_precision_one_hot
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import argmax [as 别名]
def sigmoid_precision_one_hot(logits, labels, weights_fn=None):
"""Calculate precision for a set, given one-hot labels and logits.
Predictions are converted to one-hot,
as predictions[example][arg-max(example)] = 1
Args:
logits: Tensor of size [batch-size, o=1, p=1, num-classes]
labels: Tensor of size [batch-size, o=1, p=1, num-classes]
weights_fn: Function that takes in labels and weighs examples (unused)
Returns:
precision (scalar), weights
"""
with tf.variable_scope("sigmoid_precision_one_hot", values=[logits, labels]):
del weights_fn
num_classes = logits.shape[-1]
predictions = tf.nn.sigmoid(logits)
predictions = tf.argmax(predictions, -1)
predictions = tf.one_hot(predictions, num_classes)
_, precision = tf.metrics.precision(labels=labels, predictions=predictions)
return precision, tf.constant(1.0)
示例15: sigmoid_recall_one_hot
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import argmax [as 别名]
def sigmoid_recall_one_hot(logits, labels, weights_fn=None):
"""Calculate recall for a set, given one-hot labels and logits.
Predictions are converted to one-hot,
as predictions[example][arg-max(example)] = 1
Args:
logits: Tensor of size [batch-size, o=1, p=1, num-classes]
labels: Tensor of size [batch-size, o=1, p=1, num-classes]
weights_fn: Function that takes in labels and weighs examples (unused)
Returns:
recall (scalar), weights
"""
with tf.variable_scope("sigmoid_recall_one_hot", values=[logits, labels]):
del weights_fn
num_classes = logits.shape[-1]
predictions = tf.nn.sigmoid(logits)
predictions = tf.argmax(predictions, -1)
predictions = tf.one_hot(predictions, num_classes)
_, recall = tf.metrics.recall(labels=labels, predictions=predictions)
return recall, tf.constant(1.0)