当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.Variable方法代码示例

本文整理汇总了Python中tensorflow.Variable方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.Variable方法的具体用法?Python tensorflow.Variable怎么用?Python tensorflow.Variable使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.Variable方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _build_input

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Variable [as 别名]
def _build_input(self):
        self.tails = tf.placeholder(tf.int32, [None])
        self.heads = tf.placeholder(tf.int32, [None])
        self.targets = tf.one_hot(indices=self.heads, depth=self.num_entity)
            
        if not self.query_is_language:
            self.queries = tf.placeholder(tf.int32, [None, self.num_step])
            self.query_embedding_params = tf.Variable(self._random_uniform_unit(
                                                          self.num_query + 1, # <END> token 
                                                          self.query_embed_size), 
                                                      dtype=tf.float32)
        
            rnn_inputs = tf.nn.embedding_lookup(self.query_embedding_params, 
                                                self.queries)
        else:
            self.queries = tf.placeholder(tf.int32, [None, self.num_step, self.num_word])
            self.vocab_embedding_params = tf.Variable(self._random_uniform_unit(
                                                          self.num_vocab + 1, # <END> token
                                                          self.vocab_embed_size),
                                                      dtype=tf.float32)
            embedded_query = tf.nn.embedding_lookup(self.vocab_embedding_params, 
                                                    self.queries)
            rnn_inputs = tf.reduce_mean(embedded_query, axis=2)

        return rnn_inputs 
开发者ID:fanyangxyz,项目名称:Neural-LP,代码行数:27,代码来源:model.py

示例2: _create_autosummary_var

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Variable [as 别名]
def _create_autosummary_var(name, value_expr):
    assert not _autosummary_finalized
    v = tf.cast(value_expr, tf.float32)
    if v.shape.ndims is 0:
        v = [v, np.float32(1.0)]
    elif v.shape.ndims is 1:
        v = [tf.reduce_sum(v), tf.cast(tf.shape(v)[0], tf.float32)]
    else:
        v = [tf.reduce_sum(v), tf.reduce_prod(tf.cast(tf.shape(v), tf.float32))]
    v = tf.cond(tf.is_finite(v[0]), lambda: tf.stack(v), lambda: tf.zeros(2))
    with tf.control_dependencies(None):
        var = tf.Variable(tf.zeros(2)) # [numerator, denominator]
    update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v))
    if name in _autosummary_vars:
        _autosummary_vars[name].append(var)
    else:
        _autosummary_vars[name] = [var]
    return update_op

#----------------------------------------------------------------------------
# Call filewriter.add_summary() with all summaries in the default graph,
# automatically finalizing and merging them on the first call. 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:24,代码来源:tfutil.py

示例3: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Variable [as 别名]
def __init__(self, resolution=1024, num_channels=3, dtype='uint8', dynamic_range=[0,255], label_size=0, label_dtype='float32'):
        self.resolution         = resolution
        self.resolution_log2    = int(np.log2(resolution))
        self.shape              = [num_channels, resolution, resolution]
        self.dtype              = dtype
        self.dynamic_range      = dynamic_range
        self.label_size         = label_size
        self.label_dtype        = label_dtype
        self._tf_minibatch_var  = None
        self._tf_lod_var        = None
        self._tf_minibatch_np   = None
        self._tf_labels_np      = None

        assert self.resolution == 2 ** self.resolution_log2
        with tf.name_scope('Dataset'):
            self._tf_minibatch_var = tf.Variable(np.int32(0), name='minibatch_var')
            self._tf_lod_var = tf.Variable(np.int32(0), name='lod_var') 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:19,代码来源:dataset.py

示例4: set_input_shape

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Variable [as 别名]
def set_input_shape(self, input_shape):
        batch_size, rows, cols, input_channels = input_shape
        kernel_shape = tuple(self.kernel_shape) + (input_channels,
                                                   self.output_channels)
        assert len(kernel_shape) == 4
        assert all(isinstance(e, int) for e in kernel_shape), kernel_shape
        init = tf.random_normal(kernel_shape, dtype=tf.float32)
        init = init / tf.sqrt(1e-7 + tf.reduce_sum(tf.square(init),
                                                   axis=(0, 1, 2)))
        self.kernels = tf.Variable(init)
        self.b = tf.Variable(
            np.zeros((self.output_channels,)).astype('float32'))
        input_shape = list(input_shape)
        input_shape[0] = 1
        dummy_batch = tf.zeros(input_shape)
        dummy_output = self.fprop(dummy_batch)
        output_shape = [int(e) for e in dummy_output.get_shape()]
        output_shape[0] = batch_size
        self.output_shape = tuple(output_shape) 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:21,代码来源:model.py

示例5: _decay

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Variable [as 别名]
def _decay(self):
        """L2 weight decay loss."""
        if self.decay_cost is not None:
            return self.decay_cost

        costs = []
        if self.device_name is None:
            for var in tf.trainable_variables():
                if var.op.name.find(r'DW') > 0:
                    costs.append(tf.nn.l2_loss(var))
        else:
            for layer in self.layers:
                for var in layer.params_device[self.device_name].values():
                    if (isinstance(var, tf.Variable) and
                            var.op.name.find(r'DW') > 0):
                        costs.append(tf.nn.l2_loss(var))

        self.decay_cost = tf.multiply(self.hps.weight_decay_rate,
                                      tf.add_n(costs))
        return self.decay_cost 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:22,代码来源:resnet_tf.py

示例6: nn_layer

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Variable [as 别名]
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
    # 同一层神经网络放在一个统一的命名空间下
    with tf.name_scope(layer_name):
        with tf.name_scope('weights'):
            # 权重及监控变量
            weights = tf.Variable(tf.truncated_normal([input_dim, output_dim], stddev=0.1))
            variable_summaries(weights, layer_name+'/weights')

        with tf.name_scope('biases'):
            # 偏置及监控变量
            biases = tf.Variable(tf.constant(0.0, shape=[output_dim]))
            variable_summaries(biases, layer_name + '/biases')

        with tf.name_scope('Wx_plus_b'):
            preactivate = tf.matmul(input_tensor, weights) + biases
            # 记录神经网络输出节点在经过激活函数之前的分布
            tf.summary.histogram(layer_name + '/pre_activations', preactivate)
        
        activations = act(preactivate, name='activation')
        # 记录神经网络输出节点在经过激活函数之后的分布
        tf.summary.histogram(layer_name + '/activations', activations)
        return activations 
开发者ID:wdxtub,项目名称:deep-learning-note,代码行数:24,代码来源:mnist_histogram.py

示例7: createLinearModel

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Variable [as 别名]
def createLinearModel(dimension):
    np.random.seed(1024)
    # 定义 x 和 y
    x = tf.placeholder(tf.float64, shape=[None, dimension], name='x')
    # 写成矩阵形式会大大加快运算速度
    y = tf.placeholder(tf.float64, shape=[None, 1], name='y')
    # 定义参数估计值和预测值
    betaPred = tf.Variable(np.random.random([dimension, 1]))
    yPred = tf.matmul(x, betaPred, name='y_pred')
    # 定义损失函数
    loss = tf.reduce_mean(tf.square(yPred - y))
    model = {
        'loss_function': loss,
        'independent_variable': x,
        'dependent_variable': y,
        'prediction': yPred,
        'model_params': betaPred
    }
    return model 
开发者ID:wdxtub,项目名称:deep-learning-note,代码行数:21,代码来源:2_tf_linear.py

示例8: testPS

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Variable [as 别名]
def testPS(self):
    deploy_config = model_deploy.DeploymentConfig(num_clones=1, num_ps_tasks=1)

    self.assertDeviceEqual(deploy_config.clone_device(0),
                           '/job:worker/device:GPU:0')
    self.assertEqual(deploy_config.clone_scope(0), '')
    self.assertDeviceEqual(deploy_config.optimizer_device(),
                           '/job:worker/device:CPU:0')
    self.assertDeviceEqual(deploy_config.inputs_device(),
                           '/job:worker/device:CPU:0')
    with tf.device(deploy_config.variables_device()):
      a = tf.Variable(0)
      b = tf.Variable(0)
      c = tf.no_op()
      d = slim.variable('a', [],
                        caching_device=deploy_config.caching_device())
    self.assertDeviceEqual(a.device, '/job:ps/task:0/device:CPU:0')
    self.assertDeviceEqual(a.device, a.value().device)
    self.assertDeviceEqual(b.device, '/job:ps/task:0/device:CPU:0')
    self.assertDeviceEqual(b.device, b.value().device)
    self.assertDeviceEqual(c.device, '')
    self.assertDeviceEqual(d.device, '/job:ps/task:0/device:CPU:0')
    self.assertDeviceEqual(d.value().device, '') 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:25,代码来源:model_deploy_test.py

示例9: testVariablesPS

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Variable [as 别名]
def testVariablesPS(self):
    deploy_config = model_deploy.DeploymentConfig(num_ps_tasks=2)

    with tf.device(deploy_config.variables_device()):
      a = tf.Variable(0)
      b = tf.Variable(0)
      c = tf.no_op()
      d = slim.variable('a', [],
                        caching_device=deploy_config.caching_device())

    self.assertDeviceEqual(a.device, '/job:ps/task:0/device:CPU:0')
    self.assertDeviceEqual(a.device, a.value().device)
    self.assertDeviceEqual(b.device, '/job:ps/task:1/device:CPU:0')
    self.assertDeviceEqual(b.device, b.value().device)
    self.assertDeviceEqual(c.device, '')
    self.assertDeviceEqual(d.device, '/job:ps/task:0/device:CPU:0')
    self.assertDeviceEqual(d.value().device, '') 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:19,代码来源:model_deploy_test.py

示例10: _variable_with_weight_decay

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Variable [as 别名]
def _variable_with_weight_decay(name, shape, stddev, wd):
  """Helper to create an initialized Variable with weight decay.

  Note that the Variable is initialized with a truncated normal distribution.
  A weight decay is added only if one is specified.

  Args:
    name: name of the variable
    shape: list of ints
    stddev: standard deviation of a truncated Gaussian
    wd: add L2Loss weight decay multiplied by this float. If None, weight
        decay is not added for this Variable.

  Returns:
    Variable Tensor
  """
  dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
  var = _variable_on_cpu(
      name,
      shape,
      tf.truncated_normal_initializer(stddev=stddev, dtype=dtype))
  if wd is not None:
    weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
    tf.add_to_collection('losses', weight_decay)
  return var 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:27,代码来源:cifar10.py

示例11: _create_learning_rate

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Variable [as 别名]
def _create_learning_rate(hyperparams, step_var):
  """Creates learning rate var, with decay and switching for CompositeOptimizer.

  Args:
    hyperparams: a GridPoint proto containing optimizer spec, particularly
      learning_method to determine optimizer class to use.
    step_var: tf.Variable, global training step.

  Returns:
    a scalar `Tensor`, the learning rate based on current step and hyperparams.
  """
  if hyperparams.learning_method != 'composite':
    base_rate = hyperparams.learning_rate
  else:
    spec = hyperparams.composite_optimizer_spec
    switch = tf.less(step_var, spec.switch_after_steps)
    base_rate = tf.cond(switch, lambda: tf.constant(spec.method1.learning_rate),
                        lambda: tf.constant(spec.method2.learning_rate))
  return tf.train.exponential_decay(
      base_rate,
      step_var,
      hyperparams.decay_steps,
      hyperparams.decay_base,
      staircase=hyperparams.decay_staircase) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:26,代码来源:graph_builder.py

示例12: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Variable [as 别名]
def __init__(self, total_examples, moment_orders=32):
    """Initialize a MomentsAccountant.

    Args:
      total_examples: total number of examples.
      moment_orders: the order of moments to keep.
    """

    assert total_examples > 0
    self._total_examples = total_examples
    self._moment_orders = (moment_orders
                           if isinstance(moment_orders, (list, tuple))
                           else range(1, moment_orders + 1))
    self._max_moment_order = max(self._moment_orders)
    assert self._max_moment_order < 100, "The moment order is too large."
    self._log_moments = [tf.Variable(numpy.float64(0.0),
                                     trainable=False,
                                     name=("log_moments-%d" % moment_order))
                         for moment_order in self._moment_orders] 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:21,代码来源:accountant.py

示例13: _variable_with_weight_decay

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Variable [as 别名]
def _variable_with_weight_decay(name, shape, stddev, wd):
  """Helper to create an initialized Variable with weight decay.

  Note that the Variable is initialized with a truncated normal distribution.
  A weight decay is added only if one is specified.

  Args:
    name: name of the variable
    shape: list of ints
    stddev: standard deviation of a truncated Gaussian
    wd: add L2Loss weight decay multiplied by this float. If None, weight
        decay is not added for this Variable.

  Returns:
    Variable Tensor
  """
  var = _variable_on_cpu(name, shape,
                         tf.truncated_normal_initializer(stddev=stddev))
  if wd is not None:
    weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
    tf.add_to_collection('losses', weight_decay)
  return var 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:24,代码来源:deep_cnn.py

示例14: get_unique_variable

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Variable [as 别名]
def get_unique_variable(name):
  """Gets the variable uniquely identified by that name.

  Args:
    name: a name that uniquely identifies the variable.

  Returns:
    a tensorflow variable.

  Raises:
    ValueError: if no variable uniquely identified by the name exists.
  """
  candidates = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, name)
  if not candidates:
    raise ValueError('Couldnt find variable %s' % name)

  for candidate in candidates:
    if candidate.op.name == name:
      return candidate
  raise ValueError('Variable %s does not uniquely identify a variable', name) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:22,代码来源:variables.py

示例15: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Variable [as 别名]
def __init__(
        self, sequence_length, vocab_size, embedding_size, hidden_units, l2_reg_lambda, batch_size, trainableEmbeddings):

        # Placeholders for input, output and dropout
        self.input_x1 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x1")
        self.input_x2 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x2")
        self.input_y = tf.placeholder(tf.float32, [None], name="input_y")
        self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")

        # Keeping track of l2 regularization loss (optional)
        l2_loss = tf.constant(0.0, name="l2_loss")
          
        # Embedding layer
        with tf.name_scope("embedding"):
            self.W = tf.Variable(
                tf.constant(0.0, shape=[vocab_size, embedding_size]),
                trainable=trainableEmbeddings,name="W")
            self.embedded_words1 = tf.nn.embedding_lookup(self.W, self.input_x1)
            self.embedded_words2 = tf.nn.embedding_lookup(self.W, self.input_x2)
        print self.embedded_words1
        # Create a convolution + maxpool layer for each filter size
        with tf.name_scope("output"):
            self.out1=self.stackedRNN(self.embedded_words1, self.dropout_keep_prob, "side1", embedding_size, sequence_length, hidden_units)
            self.out2=self.stackedRNN(self.embedded_words2, self.dropout_keep_prob, "side2", embedding_size, sequence_length, hidden_units)
            self.distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.out1,self.out2)),1,keep_dims=True))
            self.distance = tf.div(self.distance, tf.add(tf.sqrt(tf.reduce_sum(tf.square(self.out1),1,keep_dims=True)),tf.sqrt(tf.reduce_sum(tf.square(self.out2),1,keep_dims=True))))
            self.distance = tf.reshape(self.distance, [-1], name="distance")
        with tf.name_scope("loss"):
            self.loss = self.contrastive_loss(self.input_y,self.distance, batch_size)
        #### Accuracy computation is outside of this class.
        with tf.name_scope("accuracy"):
            self.temp_sim = tf.subtract(tf.ones_like(self.distance),tf.rint(self.distance), name="temp_sim") #auto threshold 0.5
            correct_predictions = tf.equal(self.temp_sim, self.input_y)
            self.accuracy=tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") 
开发者ID:dhwajraj,项目名称:deep-siamese-text-similarity,代码行数:36,代码来源:siamese_network_semantic.py


注:本文中的tensorflow.Variable方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。