本文整理汇总了Python中tensorflow.TextLineReader方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.TextLineReader方法的具体用法?Python tensorflow.TextLineReader怎么用?Python tensorflow.TextLineReader使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.TextLineReader方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: read_instances
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TextLineReader [as 别名]
def read_instances(self, count, shuffle, epochs):
"""Reads the data represented by this DataSource using a TensorFlow reader.
Arguments:
epochs: The number of epochs or passes over the data to perform.
Returns:
A tensor containing instances that are read.
"""
# None implies unlimited; switch the value to None when epochs is 0.
epochs = epochs or None
files = tf.train.match_filenames_once(self._path, name='files')
queue = tf.train.string_input_producer(files, num_epochs=epochs, shuffle=shuffle,
name='queue')
reader = tf.TextLineReader(name='reader')
_, instances = reader.read_up_to(queue, count, name='read')
return instances
示例2: _voc_seg_load_file
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TextLineReader [as 别名]
def _voc_seg_load_file(path, epochs=None, shuffle=True, seed=0):
PASCAL_ROOT = os.environ['VOC_DIR']
filename_queue = tf.train.string_input_producer([path],
num_epochs=epochs, shuffle=shuffle, seed=seed)
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
image_path, seg_path = tf.decode_csv(value, record_defaults=[[''], ['']], field_delim=' ')
image_abspath = PASCAL_ROOT + image_path
seg_abspath = PASCAL_ROOT + seg_path
image_content = tf.read_file(image_abspath)
image = decode_image(image_content, channels=3)
image.set_shape([None, None, 3])
imgshape = tf.shape(image)[:2]
imgname = image_path
seg_content = tf.read_file(seg_abspath)
seg = tf.cast(tf.image.decode_png(seg_content, channels=1), tf.int32)
return image, seg, imgshape, imgname
示例3: _imagenet_load_file
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TextLineReader [as 别名]
def _imagenet_load_file(path, epochs=None, shuffle=True, seed=0, subset='train', prepare_path=True):
IMAGENET_ROOT = os.environ.get('IMAGENET_DIR', '')
if not isinstance(path, list):
path = [path]
filename_queue = tf.train.string_input_producer(path,
num_epochs=epochs, shuffle=shuffle, seed=seed)
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
image_path, label_str = tf.decode_csv(value, record_defaults=[[''], ['']], field_delim=' ')
if prepare_path:
image_abspath = IMAGENET_ROOT + '/images/' + subset + image_path
else:
image_abspath = image_path
image_content = tf.read_file(image_abspath)
image = decode_image(image_content, channels=3)
image.set_shape([None, None, 3])
imgshape = tf.shape(image)[:2]
label = tf.string_to_number(label_str, out_type=tf.int32)
return image, label, imgshape, image_path
示例4: _relpath_no_label_load_file
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TextLineReader [as 别名]
def _relpath_no_label_load_file(path, root_path, epochs=None, shuffle=True, seed=0):
filename_queue = tf.train.string_input_producer([path],
num_epochs=epochs, shuffle=shuffle, seed=seed)
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
#image_path, = tf.decode_csv(value, record_defaults=[['']], field_delim=' ')
image_path = value
image_abspath = root_path + '/' + image_path
image_content = tf.read_file(image_abspath)
image = decode_image(image_content, channels=3)
image.set_shape([None, None, 3])
imgshape = tf.shape(image)[:2]
return image, imgshape, image_path
示例5: _abspath_no_label_load_file
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TextLineReader [as 别名]
def _abspath_no_label_load_file(path, epochs=None, shuffle=True, seed=0):
filename_queue = tf.train.string_input_producer([path],
num_epochs=epochs, shuffle=shuffle, seed=seed)
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
#image_path, = tf.decode_csv(value, record_defaults=[['']], field_delim=' ')
image_path = value
image_abspath = image_path
image_content = tf.read_file(image_abspath)
image = decode_image(image_content, channels=3)
image.set_shape([None, None, 3])
imgshape = tf.shape(image)[:2]
return image, imgshape, image_path
示例6: _testOneEpoch
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TextLineReader [as 别名]
def _testOneEpoch(self, files):
with self.test_session() as sess:
reader = tf.TextLineReader(name="test_reader")
queue = tf.FIFOQueue(99, [tf.string], shapes=())
key, value = reader.read(queue)
queue.enqueue_many([files]).run()
queue.close().run()
for i in range(self._num_files):
for j in range(self._num_lines):
k, v = sess.run([key, value])
self.assertAllEqual("%s:%d" % (files[i], j + 1), tf.compat.as_text(k))
self.assertAllEqual(self._LineText(i, j), v)
with self.assertRaisesOpError("is closed and has insufficient elements "
"\\(requested 1, current size 0\\)"):
k, v = sess.run([key, value])
示例7: testSkipHeaderLines
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TextLineReader [as 别名]
def testSkipHeaderLines(self):
files = self._CreateFiles()
with self.test_session() as sess:
reader = tf.TextLineReader(skip_header_lines=1, name="test_reader")
queue = tf.FIFOQueue(99, [tf.string], shapes=())
key, value = reader.read(queue)
queue.enqueue_many([files]).run()
queue.close().run()
for i in range(self._num_files):
for j in range(self._num_lines - 1):
k, v = sess.run([key, value])
self.assertAllEqual("%s:%d" % (files[i], j + 2), tf.compat.as_text(k))
self.assertAllEqual(self._LineText(i, j + 1), v)
with self.assertRaisesOpError("is closed and has insufficient elements "
"\\(requested 1, current size 0\\)"):
k, v = sess.run([key, value])
示例8: testManagedEndOfInputOneQueue
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TextLineReader [as 别名]
def testManagedEndOfInputOneQueue(self):
# Tests that the supervisor finishes without an error when using
# a fixed number of epochs, reading from a single queue.
logdir = _test_dir("managed_end_of_input_one_queue")
os.makedirs(logdir)
data_path = self._csv_data(logdir)
with tf.Graph().as_default():
# Create an input pipeline that reads the file 3 times.
filename_queue = tf.train.string_input_producer([data_path], num_epochs=3)
reader = tf.TextLineReader()
_, csv = reader.read(filename_queue)
rec = tf.decode_csv(csv, record_defaults=[[1], [1], [1]])
sv = tf.train.Supervisor(logdir=logdir)
with sv.managed_session("") as sess:
while not sv.should_stop():
sess.run(rec)
示例9: testManagedEndOfInputTwoQueues
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TextLineReader [as 别名]
def testManagedEndOfInputTwoQueues(self):
# Tests that the supervisor finishes without an error when using
# a fixed number of epochs, reading from two queues, the second
# one producing a batch from the first one.
logdir = _test_dir("managed_end_of_input_two_queues")
os.makedirs(logdir)
data_path = self._csv_data(logdir)
with tf.Graph().as_default():
# Create an input pipeline that reads the file 3 times.
filename_queue = tf.train.string_input_producer([data_path], num_epochs=3)
reader = tf.TextLineReader()
_, csv = reader.read(filename_queue)
rec = tf.decode_csv(csv, record_defaults=[[1], [1], [1]])
shuff_rec = tf.train.shuffle_batch(rec, 1, 6, 4)
sv = tf.train.Supervisor(logdir=logdir)
with sv.managed_session("") as sess:
while not sv.should_stop():
sess.run(shuff_rec)
示例10: _read_image_and_box
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TextLineReader [as 别名]
def _read_image_and_box(self, bboxes_csv):
"""Extract the filename from the queue, read the image and
produce a single box
Returns:
image, [y_min, x_min, y_max, x_max, label]
"""
reader = tf.TextLineReader(skip_header_lines=True)
_, row = reader.read(bboxes_csv)
# file ,y_min, x_min, y_max, x_max, label
record_defaults = [[""], [0.], [0.], [0.], [0.], [0.]]
# eg:
# 2008_000033,0.1831831831831832,0.208,0.7717717717717718,0.952,0
filename, y_min, x_min, y_max, x_max, label = tf.decode_csv(
row, record_defaults)
image_path = os.path.join(self._data_dir, 'VOCdevkit', 'VOC2012',
'JPEGImages') + "/" + filename + ".jpg"
# image is normalized in [-1,1]
image = read_image_jpg(image_path)
return image, tf.stack([y_min, x_min, y_max, x_max, label])
示例11: _read_image_and_box
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TextLineReader [as 别名]
def _read_image_and_box(self, bboxes_csv):
"""Extract the filename from the queue, read the image and
produce a single box
Returns:
image, box
"""
reader = tf.TextLineReader(skip_header_lines=True)
_, row = reader.read(bboxes_csv)
# file ,y_min, x_min, y_max, x_max, label
record_defaults = [[""], [0.], [0.], [0.], [0.], [0.]]
# eg:
# 2008_000033,0.1831831831831832,0.208,0.7717717717717718,0.952,0
filename, y_min, x_min, y_max, x_max, label = tf.decode_csv(
row, record_defaults)
image_path = os.path.join(self._data_dir, 'VOCdevkit', 'VOC2012',
'JPEGImages') + "/" + filename + ".jpg"
# image is normalized in [-1,1], convert to #_image_depth depth
image = read_image_jpg(image_path, depth=self._image_depth)
return image, tf.stack([y_min, x_min, y_max, x_max, label])
示例12: load_files
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TextLineReader [as 别名]
def load_files(filename_queue):
"""
Read and parse examples from data files.
Args:
filename: A list of string: filenames to read from
Returns:
uint8image: a [height, width, depth] uint8 Tensor with the image data
label: a int32 Tensor
"""
line_reader = tf.TextLineReader()
key, line = line_reader.read(filename_queue)
label, image_path = tf.decode_csv(records=line,
record_defaults=[tf.constant([], dtype=tf.int32), tf.constant([], dtype=tf.string)],
field_delim=' ')
file_contents = tf.read_file(image_path)
image = tf.image.decode_jpeg(file_contents, channels=3)
return image, label
示例13: read_csv
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TextLineReader [as 别名]
def read_csv(filename, directory, num_epoch=None, records=None):
if records is None:
records = records_default
# Read examples and labels from file
filename_queue = tf.train.string_input_producer([os.path.join(directory, filename)],
num_epochs=num_epoch, shuffle=True)
reader = tf.TextLineReader()
_, value = reader.read(filename_queue)
decoded = tf.decode_csv(value, record_defaults=records)
im_path = tf.stack(decoded[0])
if len(decoded) > 1:
label = tf.stack(decoded[1:])
else:
label = [0]
return im_path, label
示例14: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TextLineReader [as 别名]
def __init__(self, config, batch_size, one_hot=False):
self.lookup = None
reader = tf.TextLineReader()
filename_queue = tf.train.string_input_producer(["chargan.txt"])
key, x = reader.read(filename_queue)
vocabulary = self.get_vocabulary()
table = tf.contrib.lookup.string_to_index_table_from_tensor(
mapping = vocabulary, default_value = 0)
x = tf.string_join([x, tf.constant(" " * 64)])
x = tf.substr(x, [0], [64])
x = tf.string_split(x,delimiter='')
x = tf.sparse_tensor_to_dense(x, default_value=' ')
x = tf.reshape(x, [64])
x = table.lookup(x)
self.one_hot = one_hot
if one_hot:
x = tf.one_hot(x, len(vocabulary))
x = tf.cast(x, dtype=tf.float32)
x = tf.reshape(x, [1, int(x.get_shape()[0]), int(x.get_shape()[1]), 1])
else:
x = tf.cast(x, dtype=tf.float32)
x -= len(vocabulary)/2.0
x /= len(vocabulary)/2.0
x = tf.reshape(x, [1,1, 64, 1])
num_preprocess_threads = 8
x = tf.train.shuffle_batch(
[x],
batch_size=batch_size,
num_threads=num_preprocess_threads,
capacity= 5000,
min_after_dequeue=500,
enqueue_many=True)
self.x = x
self.table = table
示例15: input_fn
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TextLineReader [as 别名]
def input_fn(name="input", tables="", num_epochs=None, num_workers=1, worker_id=0, capacity=0, batch_size=64):
with tf.variable_scope(name_or_scope=name, reuse=False) as scope:
with tf.device(device_name_or_function = ("/job:localhost/replica:0/task:%d"%worker_id) if worker_id != -1 else None):
filename_queue = tf.train.string_input_producer(tables, num_epochs=num_epochs)
reader = tf.TextLineReader()
keys, values = reader.read_up_to(filename_queue, batch_size)
batch_keys, batch_values = tf.train.batch(
[keys, values],
batch_size=batch_size,
capacity=10 * batch_size,
enqueue_many=True,
num_threads=1)
record_defaults = [['']] * 4 + [[-1]] + [['']] * 9
data = tf.decode_csv(batch_values, record_defaults=record_defaults, field_delim=';')
pageid = data[4]
ctr = data[7]
cvr = data[8]
price = data[9]
isclick = data[10]
pay = data[11]
ctr = _parse_dense_features(ctr, (-1, 50))
cvr = _parse_dense_features(cvr, (-1, 50))
price = _parse_dense_features(price, (-1, 50))
isclick = _parse_dense_features(isclick, (-1, 50))
pay = _parse_dense_features(pay, (-1, 50))
batch_data = {'keys': batch_keys,
'pageid': pageid,
'ctr': ctr,
'cvr': cvr,
'price': price,
'click': isclick,
'pay': pay}
return batch_data