本文整理汇总了Python中tensorflow.TFRecordReader方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.TFRecordReader方法的具体用法?Python tensorflow.TFRecordReader怎么用?Python tensorflow.TFRecordReader使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.TFRecordReader方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: read_from_tfrecord
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TFRecordReader [as 别名]
def read_from_tfrecord(filenames):
tfrecord_file_queue = tf.train.string_input_producer(filenames, name='queue')
reader = tf.TFRecordReader()
_, tfrecord_serialized = reader.read(tfrecord_file_queue)
tfrecord_features = tf.parse_single_example(tfrecord_serialized, features={
'label': tf.FixedLenFeature([],tf.int64),
'shape': tf.FixedLenFeature([],tf.string),
'image': tf.FixedLenFeature([],tf.string),
}, name='features')
image = tf.decode_raw(tfrecord_features['image'], tf.uint8)
shape = tf.decode_raw(tfrecord_features['shape'], tf.int32)
image = tf.reshape(image, shape)
label = tfrecord_features['label']
return label, shape, image
示例2: _read_single_sequence_example
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TFRecordReader [as 别名]
def _read_single_sequence_example(file_list, tokens_shape=None):
"""Reads and parses SequenceExamples from TFRecord-encoded file_list."""
tf.logging.info('Constructing TFRecordReader from files: %s', file_list)
file_queue = tf.train.string_input_producer(file_list)
reader = tf.TFRecordReader()
seq_key, serialized_record = reader.read(file_queue)
ctx, sequence = tf.parse_single_sequence_example(
serialized_record,
sequence_features={
data_utils.SequenceWrapper.F_TOKEN_ID:
tf.FixedLenSequenceFeature(tokens_shape or [], dtype=tf.int64),
data_utils.SequenceWrapper.F_LABEL:
tf.FixedLenSequenceFeature([], dtype=tf.int64),
data_utils.SequenceWrapper.F_WEIGHT:
tf.FixedLenSequenceFeature([], dtype=tf.float32),
})
return seq_key, ctx, sequence
示例3: read_and_decode
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TFRecordReader [as 别名]
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image_raw': tf.FixedLenFeature([], tf.string),
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
image = tf.reshape(image, [227, 227, 6])
# Convert from [0, 255] -> [-0.5, 0.5] floats.
image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
return tf.split(image, 2, 2) # 3rd dimension two parts
示例4: read_and_decode_aug
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TFRecordReader [as 别名]
def read_and_decode_aug(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image_raw': tf.FixedLenFeature([], tf.string),
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
image = tf.image.random_flip_left_right(tf.reshape(image, [227, 227, 6]))
# Convert from [0, 255] -> [-0.5, 0.5] floats.
image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
image = tf.image.random_brightness(image, 0.01)
image = tf.image.random_contrast(image, 0.95, 1.05)
return tf.split(image, 2, 2) # 3rd dimension two parts
示例5: _read_raw
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TFRecordReader [as 别名]
def _read_raw(self):
"""Read raw data from TFRecord.
Returns:
:return: data list [input_raw, label_raw].
"""
self._reader = tf.TFRecordReader()
_, serialized_example = self._reader.read(self._queue)
features = tf.parse_single_example(serialized_example,
features={
'name': tf.FixedLenFeature([], tf.string),
'block': tf.FixedLenFeature([], tf.string)
})
input_raw, label_raw = decode_block(features['block'], tensor_size=self._raw_size)
if self._with_key:
return input_raw, label_raw, features['name']
return input_raw, label_raw
示例6: read_and_decode
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TFRecordReader [as 别名]
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
image.set_shape([784])
image = tf.cast(image, tf.float32) * (1. / 255)
label = tf.cast(features['label'], tf.int32)
return image, label
示例7: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TFRecordReader [as 别名]
def __init__(self, tfrecords_file, image_size=256,
min_queue_examples=1000, batch_size=1, num_threads=8, name=''):
"""
Args:
tfrecords_file: string, tfrecords file path
min_queue_examples: integer, minimum number of samples to retain in the queue that provides of batches of examples
batch_size: integer, number of images per batch
num_threads: integer, number of preprocess threads
"""
self.tfrecords_file = tfrecords_file
self.image_size = image_size
self.min_queue_examples = min_queue_examples
self.batch_size = batch_size
self.num_threads = num_threads
self.reader = tf.TFRecordReader()
self.name = name
示例8: load_patch_coordinates_from_filename_queue
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TFRecordReader [as 别名]
def load_patch_coordinates_from_filename_queue(filename_queue):
"""Loads coordinates and volume names from filename queue.
Args:
filename_queue: Tensorflow queue created from create_filename_queue()
Returns:
Tuple of coordinates (shape `[1, 3]`) and volume name (shape `[1]`) tensors.
"""
record_options = tf.python_io.TFRecordOptions(
tf.python_io.TFRecordCompressionType.GZIP)
keys, protos = tf.TFRecordReader(options=record_options).read(filename_queue)
examples = tf.parse_single_example(protos, features=dict(
center=tf.FixedLenFeature(shape=[1, 3], dtype=tf.int64),
label_volume_name=tf.FixedLenFeature(shape=[1], dtype=tf.string),
))
coord = examples['center']
volname = examples['label_volume_name']
return coord, volname
示例9: prepare_reader
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TFRecordReader [as 别名]
def prepare_reader(self,
filename_queue,
max_quantized_value=2,
min_quantized_value=-2):
"""Creates a single reader thread for YouTube8M SequenceExamples.
Args:
filename_queue: A tensorflow queue of filename locations.
max_quantized_value: the maximum of the quantized value.
min_quantized_value: the minimum of the quantized value.
Returns:
A tuple of video indexes, video features, labels, and padding data.
"""
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
return self.prepare_serialized_examples(serialized_example,
max_quantized_value, min_quantized_value)
示例10: read_and_decode
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TFRecordReader [as 别名]
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example, features = {
"image/encoded": tf.FixedLenFeature([], tf.string),
"image/height": tf.FixedLenFeature([], tf.int64),
"image/width": tf.FixedLenFeature([], tf.int64),
"image/filename": tf.FixedLenFeature([], tf.string),
"image/class/label": tf.FixedLenFeature([], tf.int64),})
image_encoded = features["image/encoded"]
image_raw = tf.image.decode_jpeg(image_encoded, channels=3)
current_image_object = image_object()
current_image_object.image = tf.image.resize_image_with_crop_or_pad(image_raw, FLAGS.image_height, FLAGS.image_width) # cropped image with size 299x299
# current_image_object.image = tf.cast(image_crop, tf.float32) * (1./255) - 0.5
current_image_object.height = features["image/height"] # height of the raw image
current_image_object.width = features["image/width"] # width of the raw image
current_image_object.filename = features["image/filename"] # filename of the raw image
current_image_object.label = tf.cast(features["image/class/label"], tf.int32) # label of the raw image
return current_image_object
示例11: read_instances
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TFRecordReader [as 别名]
def read_instances(self, count, shuffle, epochs):
"""Reads the data represented by this DataSource using a TensorFlow reader.
Arguments:
epochs: The number of epochs or passes over the data to perform.
Returns:
A tensor containing instances that are read.
"""
# None implies unlimited; switch the value to None when epochs is 0.
epochs = epochs or None
options = None
if self._compressed:
options = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.GZIP)
files = tf.train.match_filenames_once(self._path, name='files')
queue = tf.train.string_input_producer(files, num_epochs=epochs, shuffle=shuffle,
name='queue')
reader = tf.TFRecordReader(options=options, name='reader')
_, instances = reader.read_up_to(queue, count, name='read')
return instances
示例12: prepare_reader
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TFRecordReader [as 别名]
def prepare_reader(self, filename_queue, batch_size=1024):
reader = tf.TFRecordReader()
_, serialized_examples = reader.read_up_to(filename_queue, batch_size)
# set the mapping from the fields to data types in the proto
num_features = len(self.feature_names)
assert num_features > 0, "self.feature_names is empty!"
assert len(self.feature_names) == len(self.feature_sizes), \
"length of feature_names (={}) != length of feature_sizes (={})".format( \
len(self.feature_names), len(self.feature_sizes))
feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
"labels": tf.VarLenFeature(tf.int64)}
for feature_index in range(num_features):
feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
[self.feature_sizes[feature_index]], tf.float32)
features = tf.parse_example(serialized_examples, features=feature_map)
labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
labels.set_shape([None, self.num_classes])
concatenated_features = tf.concat([
features[feature_name] for feature_name in self.feature_names], 1)
return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
示例13: reader
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TFRecordReader [as 别名]
def reader(self):
"""Return a reader for a single entry from the data set.
See io_ops.py for details of Reader class.
Returns:
Reader object that reads the data set.
"""
return tf.TFRecordReader()
示例14: ReadInput
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TFRecordReader [as 别名]
def ReadInput(data_filepattern, shuffle, params):
"""Read the tf.SequenceExample tfrecord files.
Args:
data_filepattern: tf.SequenceExample tfrecord filepattern.
shuffle: Whether to shuffle the examples.
params: parameter dict.
Returns:
image sequence batch [batch_size, seq_len, image_size, image_size, channel].
"""
image_size = params['image_size']
filenames = tf.gfile.Glob(data_filepattern)
filename_queue = tf.train.string_input_producer(filenames, shuffle=shuffle)
reader = tf.TFRecordReader()
_, example = reader.read(filename_queue)
feature_sepc = {
'moving_objs': tf.FixedLenSequenceFeature(
shape=[image_size * image_size * 3], dtype=tf.float32)}
_, features = tf.parse_single_sequence_example(
example, sequence_features=feature_sepc)
moving_objs = tf.reshape(
features['moving_objs'], [params['seq_len'], image_size, image_size, 3])
if shuffle:
examples = tf.train.shuffle_batch(
[moving_objs],
batch_size=params['batch_size'],
num_threads=64,
capacity=params['batch_size'] * 100,
min_after_dequeue=params['batch_size'] * 4)
else:
examples = tf.train.batch([moving_objs],
batch_size=params['batch_size'],
num_threads=16,
capacity=params['batch_size'])
examples /= params['norm_scale']
return examples
示例15: build
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import TFRecordReader [as 别名]
def build(input_reader_config):
"""Builds a tensor dictionary based on the InputReader config.
Args:
input_reader_config: A input_reader_pb2.InputReader object.
Returns:
A tensor dict based on the input_reader_config.
Raises:
ValueError: On invalid input reader proto.
"""
if not isinstance(input_reader_config, input_reader_pb2.InputReader):
raise ValueError('input_reader_config not of type '
'input_reader_pb2.InputReader.')
if input_reader_config.WhichOneof('input_reader') == 'tf_record_input_reader':
config = input_reader_config.tf_record_input_reader
_, string_tensor = parallel_reader.parallel_read(
config.input_path,
reader_class=tf.TFRecordReader,
num_epochs=(input_reader_config.num_epochs
if input_reader_config.num_epochs else None),
num_readers=input_reader_config.num_readers,
shuffle=input_reader_config.shuffle,
dtypes=[tf.string, tf.string],
capacity=input_reader_config.queue_capacity,
min_after_dequeue=input_reader_config.min_after_dequeue)
return tf_example_decoder.TfExampleDecoder().Decode(string_tensor)
raise ValueError('Unsupported input_reader_config.')