本文整理汇总了Python中tensorflow.Saver方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.Saver方法的具体用法?Python tensorflow.Saver怎么用?Python tensorflow.Saver使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.Saver方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _build_tf_graph
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Saver [as 别名]
def _build_tf_graph(self):
"""Build the TF graph, setup model saving and setup a TF session.
Notes
-----
This method initializes a TF Saver and a TF Session via
```python
self._saver = tf.train.Saver()
self._session = tf.Session()
```
These calls are made after `self._set_up_graph()`` is called.
See the main class docs for how to properly call this method from a
child class.
"""
self._set_up_graph()
self._saver = tf.train.Saver()
self._session = tf.Session()
示例2: saver
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Saver [as 别名]
def saver(self, **kwargs):
"""Returns a Saver for all (trainable and model) variables used by the model.
Model variables include e.g. moving mean and average in BatchNorm.
:return: tf.Saver
"""
return tf.train.Saver(self.vars, **kwargs)
示例3: epoch_completed
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Saver [as 别名]
def epoch_completed(model, session, epoch, epoch_loss,
val_instances, val_labels, saver, save_path, best_f1):
"""Runs every time an epoch completes.
Print the performance on the validation set, and update the saved model if
its performance is better on the previous ones. If the performance dropped,
tell the training to stop.
Args:
model: The currently trained path-based model.
session: The current TensorFlow session.
epoch: The epoch number.
epoch_loss: The current epoch loss.
val_instances: The validation set instances (evaluation between epochs).
val_labels: The validation set labels (for evaluation between epochs).
saver: tf.Saver object
save_path: Where to save the model.
best_f1: the best F1 achieved so far.
Returns:
The F1 achieved on the training set.
"""
# Evaluate on the validation set
val_pred = model.predict(session, val_instances)
precision, recall, f1, _ = metrics.precision_recall_fscore_support(
val_labels, val_pred, average='weighted')
print(
'Epoch: %d/%d, Loss: %f, validation set: P: %.3f, R: %.3f, F1: %.3f\n' % (
epoch + 1, model.hparams.num_epochs, epoch_loss,
precision, recall, f1))
if f1 > best_f1:
print('Saving model in: %s' % (save_path + 'best.ckpt'))
saver.save(session, save_path + 'best.ckpt')
print('Model saved in file: %s' % (save_path + 'best.ckpt'))
return f1
示例4: saver
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Saver [as 别名]
def saver(self):
if self._saver is None:
self._saver = tf.train.Saver()
return self._saver
示例5: tf_saver
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Saver [as 别名]
def tf_saver(self):
if not hasattr(self, '_tf_saver'):
self._tf_saver = tf.train.Saver(
var_list=self.var_list,
*self.tfsaver_args, **self.tfsaver_kwargs)
return self._tf_saver
示例6: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Saver [as 别名]
def __init__(self,
max_number_of_steps=0,
num_updates_per_observation=1,
num_collect_per_update=1,
num_collect_per_meta_update=1,
log_every_n_steps=1,
policy_save_fn=None,
save_policy_every_n_steps=0,
should_stop_early=None):
"""Returns a function that is executed at each step of slim training.
Args:
max_number_of_steps: Optional maximum number of train steps to take.
num_updates_per_observation: Number of updates per observation.
log_every_n_steps: The frequency, in terms of global steps, that the loss
and global step and logged.
policy_save_fn: A tf.Saver().save function to save the policy.
save_policy_every_n_steps: How frequently to save the policy.
should_stop_early: Optional hook to report whether training should stop.
Raises:
ValueError: If policy_save_fn is not provided when
save_policy_every_n_steps > 0.
"""
if save_policy_every_n_steps and policy_save_fn is None:
raise ValueError(
'policy_save_fn is required when save_policy_every_n_steps > 0')
self.max_number_of_steps = max_number_of_steps
self.num_updates_per_observation = num_updates_per_observation
self.num_collect_per_update = num_collect_per_update
self.num_collect_per_meta_update = num_collect_per_meta_update
self.log_every_n_steps = log_every_n_steps
self.policy_save_fn = policy_save_fn
self.save_policy_every_n_steps = save_policy_every_n_steps
self.should_stop_early = should_stop_early
self.last_global_step_val = 0
self.train_op_fn = None
self.collect_and_train_fn = None
tf.logging.info('Training for %d max_number_of_steps',
self.max_number_of_steps)
示例7: epoch_completed
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Saver [as 别名]
def epoch_completed(model, session, epoch, epoch_loss,
val_instances, val_labels, saver, save_path, best_f1):
"""Runs every time an epoch completes.
Print the performance on the validation set, and update the saved model if
its performance is better on the previous ones. If the performance dropped,
tell the training to stop.
Args:
model: The currently trained path-based model.
session: The current TensorFlow session.
epoch: The epoch number.
epoch_loss: The current epoch loss.
val_instances: The validation set instances (evaluation between epochs).
val_labels: The validation set labels (for evaluation between epochs).
saver: tf.Saver object
save_path: Where to save the model.
best_f1: the best F1 achieved so far.
Returns:
The F1 achieved on the training set.
"""
# Evaluate on the validation set
val_pred = model.predict(session, val_instances)
precision, recall, f1, _ = metrics.precision_recall_fscore_support(
val_labels, val_pred, average='weighted')
print(
'Epoch: %d/%d, Loss: %f, validation set: P: %.3f, R: %.3f, F1: %.3f\n' % (
epoch + 1, model.hparams.num_epochs, epoch_loss,
precision, recall, f1))
if f1 > best_f1:
save_filename = os.path.join(save_path, 'best.ckpt')
print('Saving model in: %s' % save_filename)
saver.save(session, save_filename)
print('Model saved in file: %s' % save_filename)
return f1
示例8: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Saver [as 别名]
def __init__(self, make_loss_and_init_fn):
"""Wraps a model in the Problem interface.
make_loss_and_init argument is a callable that returns a tuple of
two other callables as follows.
The first will construct most of the graph and return the problem loss. It
is essential that this graph contains the totality of the model's variables,
but none of its queues.
The second will return construct the model initialization graph given a list
of parameters and return a callable that is passed an instance of
tf.Session, and should initialize the models' parameters.
An argument value function would look like this:
```python
def make_loss_and_init_fn():
inputs = queued_reader()
def make_loss():
return create_model_with_variables(inputs)
def make_init_fn(parameters):
saver = tf.Saver(parameters)
def init_fn(sess):
sess.restore(sess, ...)
return init_fn
return make_loss, make_init_fn
```
Args:
make_loss_and_init_fn: a callable, as described aboce
"""
make_loss_fn, make_init_fn = make_loss_and_init_fn()
self.make_loss_fn = make_loss_fn
self.parameters, self.constants = _get_variables(make_loss_fn)
if make_init_fn is not None:
init_fn = make_init_fn(self.parameters + self.constants)
else:
init_op = tf.initialize_variables(self.parameters + self.constants)
init_fn = lambda sess: sess.run(init_op)
tf.logging.info("ModelAdapter parameters: %s",
[op.name for op in self.parameters])
tf.logging.info("ModelAdapter constants: %s",
[op.name for op in self.constants])
super(ModelAdapter, self).__init__(
[], random_seed=None, noise_stdev=0.0, init_fn=init_fn)
示例9: get_restore_vars
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Saver [as 别名]
def get_restore_vars(self, save_file):
"""Create the `var_list` init argument to tf.Saver from save_file.
Extracts the subset of variables from tf.global_variables that match the
name and shape of variables saved in the checkpoint file, and returns these
as a list of variables to restore.
To support multi-model training, a model prefix is prepended to all
tf global_variable names, although this prefix is stripped from
all variables before they are saved to a checkpoint. Thus,
Args:
save_file: path of tf.train.Saver checkpoint.
Returns:
dict: checkpoint variables.
"""
reader = tf.train.NewCheckpointReader(save_file)
var_shapes = reader.get_variable_to_shape_map()
# Map old vars from checkpoint to new vars via load_param_dict.
log.info('Saved vars and shapes:\n' + str(var_shapes))
# Specify which vars are to be restored vs. reinitialized.
all_vars = self.var_list
restore_vars = {
name: var for name, var in all_vars.items() \
if name in var_shapes}
if self.load_param_dict:
# associate checkpoint names with actual variables
for ckpt_var_name, curr_var_name in self.load_param_dict.items():
if curr_var_name in all_vars:
restore_vars[ckpt_var_name] = all_vars[curr_var_name]
restore_vars = self.filter_var_list(restore_vars)
if not self.restore_global_step:
restore_vars.pop('global_step')
# These variables are stored in the checkpoint,
# but do not appear in the current graph
in_ckpt_not_in_graph = [ \
name \
for name in var_shapes.keys() \
if (name not in all_vars.keys()) and (not any([name.endswith(s) for s in OPTIMIZER_NAMES]))]
log.info('Vars in ckpt, not in graph:\n' + str(in_ckpt_not_in_graph))
# Ensure the vars to restored have the correct shape.
var_list = {}
for name, var in restore_vars.items():
var_shape = var.get_shape().as_list()
if var_shape == var_shapes[name]:
var_list[name] = var
else:
log.info('Shape mismatch for %s' % name \
+ str(var_shape) \
+ str(var_shapes[name]))
return var_list
示例10: init_predict
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Saver [as 别名]
def init_predict(hs, ts, rs):
'''
# (1) Set import files and OpenKE will automatically load models via tf.Saver().
con = Config()
# con.set_in_path("OpenKE/benchmarks/FB15K/")
con.set_in_path("openke_data/")
# con.set_test_link_prediction(True)
con.set_test_triple_classification(True)
con.set_work_threads(8)
con.set_dimension(100)
# con.set_import_files("OpenKE/res/model.vec.tf")
con.set_import_files("openke_data/embs/glove_initialized/glove.transe.SGD.pt")
con.init()
con.set_model(models.TransE)
con.test()
con.predict_triple(hs, ts, rs)
# con.show_link_prediction(2,1)
# con.show_triple_classification(2,1,3)
'''
# (2) Read model parameters from json files and manually load parameters.
con = Config()
con.set_in_path("./openke_data/")
con.set_test_triple_classification(True)
con.set_work_threads(8)
con.set_dimension(100)
con.init()
con.set_model(models.TransE)
f = open("./openke_data/embs/glove_initialized/glove.transe.SGD.vec.json", "r")
content = json.loads(f.read())
f.close()
con.set_parameters(content)
con.test()
# (3) Manually load models via tf.Saver().
# con = config.Config()
# con.set_in_path("./benchmarks/FB15K/")
# con.set_test_flag(True)
# con.set_work_threads(4)
# con.set_dimension(50)
# con.init()
# con.set_model(models.TransE)
# con.import_variables("./res/model.vec.tf")
# con.test()