当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.Records方法代码示例

本文整理汇总了Python中tensorflow.Records方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.Records方法的具体用法?Python tensorflow.Records怎么用?Python tensorflow.Records使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.Records方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_input_tensors

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Records [as 别名]
def get_input_tensors(batch_size, tf_records, num_repeats=None,
                      shuffle_records=True, shuffle_examples=True,
                      shuffle_buffer_size=None,
                      filter_amount=0.05):
    '''Read tf.Records and prepare them for ingestion by dual_net.  See
    `read_tf_records` for parameter documentation.

    Returns a dict of tensors (see return value of batch_parse_tf_example)
    '''
    if shuffle_buffer_size is None:
        shuffle_buffer_size = SHUFFLE_BUFFER_SIZE
    dataset = read_tf_records(batch_size, tf_records, num_repeats=num_repeats,
                              shuffle_records=shuffle_records,
                              shuffle_examples=shuffle_examples,
                              shuffle_buffer_size=shuffle_buffer_size,
                              filter_amount=filter_amount)
    dataset = dataset.filter(lambda t: tf.equal(tf.shape(t)[0], batch_size))
    dataset = dataset.map(functools.partial(
        batch_parse_tf_example, batch_size))
    return dataset.make_one_shot_iterator().get_next()

# End-to-end utility functions 
开发者ID:mlperf,项目名称:training_results_v0.5,代码行数:24,代码来源:preprocessing.py

示例2: check_data

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Records [as 别名]
def check_data(self, tfrecords_filename):
        """Checks a specified tf.Records file for coreect dataformat.
        Check if the data format in the example files is correct. Prints the shape of the data
        stored in a tf.Records file.

        Args
          tfrecords_filename: `str`, the path to the `tf.records` file to check.
        """
        record_iterator = tf.python_io.tf_record_iterator(path=tfrecords_filename)

        for string_record in record_iterator:
            # Parse the next example
            example = tf.train.Example()
            example.ParseFromString(string_record)

            # Get the features you stored (change to match your tfrecord writing code)
            seq = (example.features.feature['seq_raw']
                   .bytes_list
                   .value[0])

            label = (example.features.feature['label_raw']
                     .bytes_list
                     .value[0])

            # Convert to a numpy array (change dtype to the datatype you stored)
            seq_array = np.fromstring(seq, dtype=np.float64)
            label_array = np.fromstring(label, dtype=np.float64)

            # Print the image shape; does it match your expectations?
            print(seq_array.shape)
            print(label_array.shape) 
开发者ID:igemsoftware2017,项目名称:AiGEM_TeamHeidelberg2017,代码行数:33,代码来源:DeeProtein.py

示例3: get_input_tensors

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Records [as 别名]
def get_input_tensors(batch_size, feature_layout, tf_records, num_repeats=1,
                      shuffle_records=True, shuffle_examples=True,
                      shuffle_buffer_size=None,
                      filter_amount=0.05, random_rotation=True):
    """Read tf.Records and prepare them for ingestion by dual_net.

    See `read_tf_records` for parameter documentation.

    Returns a dict of tensors (see return value of batch_parse_tf_example)
    """
    print("Reading tf_records from {} inputs".format(len(tf_records)))
    dataset = read_tf_records(
        batch_size,
        tf_records,
        num_repeats=num_repeats,
        shuffle_records=shuffle_records,
        shuffle_examples=shuffle_examples,
        shuffle_buffer_size=shuffle_buffer_size,
        filter_amount=filter_amount,
        interleave=False)
    dataset = dataset.filter(lambda t: tf.equal(tf.shape(t)[0], batch_size))
    dataset = dataset.map(
        functools.partial(batch_parse_tf_example, batch_size, feature_layout))
    if random_rotation:
        # Unbatch the dataset so we can rotate it
        dataset = dataset.apply(tf.data.experimental.unbatch())
        dataset = dataset.apply(tf.data.experimental.map_and_batch(
            functools.partial(_random_rotation, feature_layout),
            batch_size))

    return dataset.make_one_shot_iterator().get_next() 
开发者ID:mlperf,项目名称:training,代码行数:33,代码来源:preprocessing.py


注:本文中的tensorflow.Records方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。