当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.ReaderBase方法代码示例

本文整理汇总了Python中tensorflow.ReaderBase方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.ReaderBase方法的具体用法?Python tensorflow.ReaderBase怎么用?Python tensorflow.ReaderBase使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.ReaderBase方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ReaderBase [as 别名]
def __init__(self, config, mode="train", input_reader=None):
    """Basic setup. The actual TensorFlow graph is constructed in build().

    Args:
      config: Object containing configuration parameters.
      mode: "train", "eval" or "encode".
      input_reader: Subclass of tf.ReaderBase for reading the input serialized
        tf.Example protocol buffers. Defaults to TFRecordReader.

    Raises:
      ValueError: If mode is invalid.
    """
    if mode not in ["train", "eval", "encode"]:
      raise ValueError("Unrecognized mode: %s" % mode)

    self.config = config
    self.mode = mode
    self.reader = input_reader if input_reader else tf.TFRecordReader()

    # Initializer used for non-recurrent weights.
    self.uniform_initializer = tf.random_uniform_initializer(
        minval=-self.config.uniform_init_scale,
        maxval=self.config.uniform_init_scale)

    # Input sentences represented as sequences of word ids. "encode" is the
    # source sentence, "decode_pre" is the previous sentence and "decode_post"
    # is the next sentence.
    # Each is an int64 Tensor with  shape [batch_size, padded_length].
    self.encode_ids = None
    self.decode_pre_ids = None
    self.decode_post_ids = None

    # Boolean masks distinguishing real words (1) from padded words (0).
    # Each is an int32 Tensor with shape [batch_size, padded_length].
    self.encode_mask = None
    self.decode_pre_mask = None
    self.decode_post_mask = None

    # Input sentences represented as sequences of word embeddings.
    # Each is a float32 Tensor with shape [batch_size, padded_length, emb_dim].
    self.encode_emb = None
    self.decode_pre_emb = None
    self.decode_post_emb = None

    # The output from the sentence encoder.
    # A float32 Tensor with shape [batch_size, num_gru_units].
    self.thought_vectors = None

    # The cross entropy losses and corresponding weights of the decoders. Used
    # for evaluation.
    self.target_cross_entropy_losses = []
    self.target_cross_entropy_loss_weights = []

    # The total loss to optimize.
    self.total_loss = None 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:57,代码来源:skip_thoughts_model.py

示例2: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ReaderBase [as 别名]
def __init__(self, config, mode="train", input_reader=None):
        """Basic setup. The actual TensorFlow graph is constructed in build().

        Args:
          config: Object containing configuration parameters.
          mode: "train", "eval" or "encode".
          input_reader: Subclass of tf.ReaderBase for reading the input serialized
            tf.Example protocol buffers. Defaults to TFRecordReader.

        Raises:
          ValueError: If mode is invalid.
        """
        if mode not in ["train", "eval", "encode"]:
            raise ValueError("Unrecognized mode: %s" % mode)

        self.config = config
        self.mode = mode
        self.reader = input_reader if input_reader else tf.TFRecordReader()

        # Initializer used for non-recurrent weights.
        self.uniform_initializer = tf.random_uniform_initializer(
            minval=-self.config.uniform_init_scale,
            maxval=self.config.uniform_init_scale)

        # Input sentences represented as sequences of word ids. "encode" is the
        # source sentence, "decode_pre" is the previous sentence and
        # "decode_post" is the next sentence.
        # Each is an int64 Tensor with  shape [batch_size, padded_length].
        self.encode_ids = None
        self.decode_pre_ids = None
        self.decode_post_ids = None

        # Boolean masks distinguishing real words (1) from padded words (0).
        # Each is an int32 Tensor with shape [batch_size, padded_length].
        self.encode_mask = None
        self.decode_pre_mask = None
        self.decode_post_mask = None

        # Input sentences represented as sequences of word embeddings.
        # Each is a float32 Tensor with shape
        # [batch_size, padded_length, emb_dim].
        self.encode_emb = None
        self.decode_pre_emb = None
        self.decode_post_emb = None

        # The output from the sentence encoder.
        # A float32 Tensor with shape [batch_size, num_gru_units].
        self.thought_vectors = None

        # The cross entropy losses and corresponding weights of the decoders.
        # Used for evaluation.
        self.target_cross_entropy_losses = []
        self.target_cross_entropy_loss_weights = []

        # The total loss to optimize.
        self.total_loss = None 
开发者ID:snuspl,项目名称:parallax,代码行数:58,代码来源:skip_thoughts_model.py

示例3: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ReaderBase [as 别名]
def __init__(self, config, mode="train", input_reader=None, input_queue=None):
    """Basic setup. The actual TensorFlow graph is constructed in build().

    Args:
      config: Object containing configuration parameters.
      mode: "train", "eval" or "encode".
      input_reader: Subclass of tf.ReaderBase for reading the input serialized
        tf.Example protocol buffers. Defaults to TFRecordReader.

    Raises:
      ValueError: If mode is invalid.
    """
    if mode not in ["train", "eval", "encode"]:
      raise ValueError("Unrecognized mode: %s" % mode)

    self.config = config
    self.mode = mode
    self.reader = input_reader if input_reader else tf.TFRecordReader()
    self.input_queue = input_queue

    # Initializer used for non-recurrent weights.
    self.uniform_initializer = tf.random_uniform_initializer(
        minval=-FLAGS.uniform_init_scale,
        maxval=FLAGS.uniform_init_scale)

    # Input sentences represented as sequences of word ids. "encode" is the
    # source sentence, "decode_pre" is the previous sentence and "decode_post"
    # is the next sentence.
    # Each is an int64 Tensor with  shape [batch_size, padded_length].
    self.encode_ids = None

    # Boolean masks distinguishing real words (1) from padded words (0).
    # Each is an int32 Tensor with shape [batch_size, padded_length].
    self.encode_mask = None

    # Input sentences represented as sequences of word embeddings.
    # Each is a float32 Tensor with shape [batch_size, padded_length, emb_dim].
    self.encode_emb = None

    # The output from the sentence encoder.
    # A float32 Tensor with shape [batch_size, num_gru_units].
    self.thought_vectors = None

    # The total loss to optimize.
    self.total_loss = None 
开发者ID:lajanugen,项目名称:S2V,代码行数:47,代码来源:s2v_model.py


注:本文中的tensorflow.ReaderBase方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。