本文整理汇总了Python中tensorflow.QueueBase方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.QueueBase方法的具体用法?Python tensorflow.QueueBase怎么用?Python tensorflow.QueueBase使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.QueueBase方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import QueueBase [as 别名]
def __init__(self, config, input_queue=None, predict_tower=None):
"""
:param config: a `TrainConfig` instance
:param input_queue: a `tf.QueueBase` instance to be used to buffer datapoints.
Defaults to a FIFO queue of size 100.
:param predict_tower: list of gpu relative idx to run prediction. default to be [0].
Use -1 for cpu.
"""
super(QueueInputTrainer, self).__init__(config)
self.input_vars = self.model.get_input_vars()
# use a smaller queue size for now, to avoid https://github.com/tensorflow/tensorflow/issues/2942
if input_queue is None:
self.input_queue = tf.FIFOQueue(
50, [x.dtype for x in self.input_vars], name='input_queue')
else:
self.input_queue = input_queue
# by default, use the first training gpu for prediction
self.predict_tower = predict_tower or [0]
self.dequed_inputs = None
示例2: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import QueueBase [as 别名]
def __init__(self, config, input_queue=None, predict_tower=None):
"""
:param config: a `TrainConfig` instance
:param input_queue: a `tf.QueueBase` instance to be used to buffer datapoints.
Defaults to a FIFO queue of size 100.
:param predict_tower: list of gpu relative idx to run prediction. default to be [0].
Use -1 for cpu.
"""
super(QueueInputTrainer, self).__init__(config)
self.input_vars = self.model.get_input_vars()
# use a smaller queue size for now, to avoid https://github.com/tensorflow/tensorflow/issues/2942
queue_size = config.extra_arg['queue_size']
self.dummy_predictor = config.extra_arg['dummy_predictor']
print 'DUMMY PREDICTOR', self.dummy_predictor
if input_queue is None:
self.input_queue = tf.FIFOQueue(
queue_size, [x.dtype for x in self.input_vars], name='input_queue')
else:
self.input_queue = input_queue
# by default, use the first training gpu for prediction
self.predict_tower = predict_tower or [0]
self.dequed_inputs = None
self.queue_size_op = self.input_queue.size()
示例3: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import QueueBase [as 别名]
def __init__(self, ds, queue=None):
"""
Args:
ds(DataFlow): the input DataFlow.
queue (tf.QueueBase): A :class:`tf.QueueBase` whose type
should match the corresponding input signature of the model.
Defaults to a FIFO queue of size 50.
"""
if not isinstance(ds, DataFlow):
raise ValueError("QueueInput takes a DataFlow! Got {}".format(ds))
self.queue = queue
self.ds = ds
self._inf_ds = RepeatedData(ds, -1)
self._started = False
示例4: test_init_loom
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import QueueBase [as 别名]
def test_init_loom(self):
p = plan.TrainPlan()
p.compiler = block_compiler.Compiler().compile(blocks.Scalar())
p.batch_size = 3
p.task = 13
p.num_dequeuers = 7
self.assertRaisesWithLiteralMatch(
ValueError, 'must have at least one PS task; 0', p.init_loom)
p.ps_tasks = 5
self.assertRaisesWithLiteralMatch(
ValueError, 'worker_replicas must be at least num_queues + '
'num_dequeuers; 0 vs. 5 + 7 = 12', p.init_loom)
p.worker_replicas = 14
# Would be best to actually create a queue and inspect it, but
# tf.QueueBase doesn't currently expose these properties.
self.assertEqual(p._create_queue(3, ctor=dict)['capacity'], 12)
p.queue_capacity = 42
q_dict = p._create_queue(3, ctor=dict)
self.assertEqual(q_dict['capacity'], 42)
self.assertEqual(q_dict['shared_name'], 'tensorflow_fold_plan_queue3')
self.assertEqual(p.init_loom(), (True, False))
p.compiler = block_compiler.Compiler().compile(blocks.Scalar())
p.task = 3
self.assertEqual(p.init_loom(), (False, True))
p.compiler = block_compiler.Compiler().compile(blocks.Scalar())
p.num_dequeuers = 0
self.assertRaisesWithLiteralMatch(
ValueError, 'cannot specify queue_capacity without also '
'specifying num_dequeuers', p.init_loom)
p.compiler = block_compiler.Compiler().compile(blocks.Scalar())
p.queue_capacity = 0
self.assertEqual(p.init_loom(), (True, True))