本文整理汇总了Python中tensorflow.InteractiveSession方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.InteractiveSession方法的具体用法?Python tensorflow.InteractiveSession怎么用?Python tensorflow.InteractiveSession使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.InteractiveSession方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: omniglot
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import InteractiveSession [as 别名]
def omniglot():
sess = tf.InteractiveSession()
""" def wrapper(v):
return tf.Print(v, [v], message="Printing v")
v = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='Matrix')
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
temp = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='temp')
temp = wrapper(v)
#with tf.control_dependencies([temp]):
temp.eval()
print 'Hello'"""
def update_tensor(V, dim2, val): # Update tensor V, with index(:,dim2[:]) by val[:]
val = tf.cast(val, V.dtype)
def body(_, (v, d2, chg)):
d2_int = tf.cast(d2, tf.int32)
return tf.slice(tf.concat_v2([v[:d2_int],[chg] ,v[d2_int+1:]], axis=0), [0], [v.get_shape().as_list()[0]])
Z = tf.scan(body, elems=(V, dim2, val), initializer=tf.constant(1, shape=V.get_shape().as_list()[1:], dtype=tf.float32), name="Scan_Update")
return Z
示例2: get_tags_from_event
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import InteractiveSession [as 别名]
def get_tags_from_event(filename):
sess = tf.InteractiveSession()
i = 0;
tags = [];
with sess.as_default():
for event in tf.train.summary_iterator(filename):
if (i==0):
printed = 0;
for val in event.summary.value:
print(val.tag)
tags.append[val.tag]
printed = 1
if (printed):
i = 1
else:
break;
return tags
示例3: read_images_data_from_event
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import InteractiveSession [as 别名]
def read_images_data_from_event(filename, tag):
image_str = tf.placeholder(tf.string)
image_tf = tf.image.decode_image(image_str)
image_list = [];
sess = tf.InteractiveSession()
with sess.as_default():
count = 0
for event in tf.train.summary_iterator(filename):
for val in event.summary.value:
if val.tag == tag:
im = image_tf.eval({image_str: val.image.encoded_image_string})
image_list.append(im)
count += 1
return image_list
示例4: save_images_from_event
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import InteractiveSession [as 别名]
def save_images_from_event(filename, tag, output_dir='./'):
assert(os.path.isdir(output_dir))
image_str = tf.placeholder(tf.string)
image_tf = tf.image.decode_image(image_str)
sess = tf.InteractiveSession()
with sess.as_default():
count = 0
for event in tf.train.summary_iterator(filename):
for val in event.summary.value:
if val.tag == tag:
im = image_tf.eval({image_str: val.image.encoded_image_string})
output_fn = os.path.realpath('{}/image_{}_{:05d}.png'.format(output_dir, tag, count))
print("Saving '{}'".format(output_fn))
scipy.misc.imsave(output_fn, im)
count += 1
return
示例5: main
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import InteractiveSession [as 别名]
def main(_):
# Create the model and load its weights.
sess = tf.InteractiveSession()
create_inference_graph(FLAGS.wanted_words, FLAGS.sample_rate,
FLAGS.clip_duration_ms, FLAGS.clip_stride_ms,
FLAGS.window_size_ms, FLAGS.window_stride_ms,
FLAGS.dct_coefficient_count, FLAGS.model_architecture)
models.load_variables_from_checkpoint(sess, FLAGS.start_checkpoint)
# Turn all the variables into inline constants inside the graph and save it.
frozen_graph_def = graph_util.convert_variables_to_constants(
sess, sess.graph_def, ['labels_softmax'])
tf.train.write_graph(
frozen_graph_def,
os.path.dirname(FLAGS.output_file),
os.path.basename(FLAGS.output_file),
as_text=False)
tf.logging.info('Saved frozen graph to %s', FLAGS.output_file)
示例6: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import InteractiveSession [as 别名]
def __init__(self, image_height, image_width, image_depth, channels=1, costname=("dice coefficient",),
inference=False, model_path=None):
self.image_width = image_width
self.image_height = image_height
self.image_depth = image_depth
self.channels = channels
self.X = tf.placeholder("float", shape=[None, self.image_depth, self.image_height, self.image_width,
self.channels])
self.Y_gt = tf.placeholder("float", shape=[None, self.image_depth, self.image_height, self.image_width,
self.channels])
self.lr = tf.placeholder('float')
self.phase = tf.placeholder(tf.bool)
self.drop = tf.placeholder('float')
self.Y_pred = _create_conv_net(self.X, self.image_depth, self.image_width, self.image_height, self.channels,
self.phase, self.drop)
self.cost = self.__get_cost(costname[0])
self.accuracy = -self.__get_cost(costname[0])
if inference:
init = tf.global_variables_initializer()
saver = tf.train.Saver()
self.sess = tf.InteractiveSession()
self.sess.run(init)
saver.restore(self.sess, model_path)
示例7: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import InteractiveSession [as 别名]
def __init__(self, action_size):
# environment settings
self.state_size = (84, 84, 4)
self.action_size = action_size
self.discount_factor = 0.99
self.no_op_steps = 30
# optimizer parameters
self.actor_lr = 2.5e-4
self.critic_lr = 2.5e-4
self.threads = 8
# create model for actor and critic network
self.actor, self.critic = self.build_model()
# method for training actor and critic network
self.optimizer = [self.actor_optimizer(), self.critic_optimizer()]
self.sess = tf.InteractiveSession()
K.set_session(self.sess)
self.sess.run(tf.global_variables_initializer())
self.summary_placeholders, self.update_ops, self.summary_op = self.setup_summary()
self.summary_writer = tf.summary.FileWriter('summary/breakout_a3c', self.sess.graph)
示例8: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import InteractiveSession [as 别名]
def __init__(self, model_param_path='model/model_params.npz', max_batch_size=64):
"""Initalized tensorflow session, set up tensorflow graph, and loads
pretrained model weights
Arguments:
model_params (string) : Path to pretrained model parameters
max_batch_size (int) : Maximum number of images handled in a single
call to classify.
"""
self.max_batch_size = max_batch_size
self.model_param_path = model_param_path
#Setup tensorflow graph and initizalize variables
self.session = tf.InteractiveSession()
self.x = tf.placeholder(tf.float32, shape=[None, 28, 28, 1], name='x')
self.network, self.predictions, self.probabilities = self._load_model_definition()
self.session.run( tf.global_variables_initializer() )
#Load saved parametes
self._load_model_parameters()
示例9: create_session
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import InteractiveSession [as 别名]
def create_session(timeout=10000, interactive=True):
"""Create a tf session for the model.
# This function is slight motification of code written by Alex Mordvintsev
Args:
timeout: tfutil param.
Returns:
TF session.
"""
graph = tf.Graph()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.operation_timeout_in_ms = int(timeout*1000)
if interactive:
return tf.InteractiveSession(graph=graph, config=config)
else:
return tf.Session(graph=graph, config=config)
示例10: make_session
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import InteractiveSession [as 别名]
def make_session(num_cpu=None, make_default=False, graph=None):
"""
Returns a session that will use <num_cpu> CPU's only
:param num_cpu: (int) number of CPUs to use for TensorFlow
:param make_default: (bool) if this should return an InteractiveSession or a normal Session
:param graph: (TensorFlow Graph) the graph of the session
:return: (TensorFlow session)
"""
if num_cpu is None:
num_cpu = int(os.getenv('RCALL_NUM_CPU', multiprocessing.cpu_count()))
tf_config = tf.ConfigProto(
allow_soft_placement=True,
inter_op_parallelism_threads=num_cpu,
intra_op_parallelism_threads=num_cpu)
# Prevent tensorflow from taking all the gpu memory
tf_config.gpu_options.allow_growth = True
if make_default:
return tf.InteractiveSession(config=tf_config, graph=graph)
else:
return tf.Session(config=tf_config, graph=graph)
示例11: retrieve_seq_length_op2
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import InteractiveSession [as 别名]
def retrieve_seq_length_op2(data):
"""An op to compute the length of a sequence, from input shape of [batch_size, n_step(max)],
it can be used when the features of padding (on right hand side) are all zeros.
Parameters
-----------
data : tensor
[batch_size, n_step(max)] with zero padding on right hand side.
Examples
--------
>>> data = [[1,2,0,0,0],
... [1,2,3,0,0],
... [1,2,6,1,0]]
>>> o = retrieve_seq_length_op2(data)
>>> sess = tf.InteractiveSession()
>>> sess.run(tf.initialize_all_variables())
>>> print(o.eval())
... [2 3 4]
"""
return tf.reduce_sum(tf.cast(tf.greater(data, tf.zeros_like(data)), tf.int32), 1)
# Dynamic RNN
示例12: run
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import InteractiveSession [as 别名]
def run(self):
g_emotion = load_graph('emotion.pb')
x_emotion = g_emotion.get_tensor_by_name('import/Placeholder:0')
logits_emotion = g_emotion.get_tensor_by_name('import/logits:0')
sess_emotion = tf.InteractiveSession(graph = g_emotion)
with open('fast-text-emotion.json') as fopen:
dict_emotion = json.load(fopen)
with self.input()['Sentiment'].open('r') as fopen:
outputs = json.load(fopen)
for i in range(0, len(outputs), self.batch_size):
batch_x_text = outputs[i : min(i + self.batch_size, len(outputs))]
batch_x_text = [t['text'] for t in batch_x_text]
batch_x_text = [clearstring(t) for t in batch_x_text]
batch_x = str_idx(batch_x_text, dict_emotion['dictionary'], 100)
output_emotion = sess_emotion.run(
logits_emotion, feed_dict = {x_emotion: batch_x}
)
labels = [emotion_label[l] for l in np.argmax(output_emotion, 1)]
for no, label in enumerate(labels):
outputs[i + no]['emotion_label'] = label
with self.output().open('w') as fopen:
fopen.write(json.dumps(outputs))
示例13: visualisation
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import InteractiveSession [as 别名]
def visualisation(final_result):
# 使用一个新的变量来保存最终输出层向量的结果
# 因为 embedding 是通过 Tensorflow 中的变量完成的,所以 PROJECTOR 可视化的都是 TF 变量
y = tf.Variable(final_result, name = TENSOR_NAME)
summary_writer = tf.summary.FileWriter(LOG_DIR)
# 通过 PROJECTOR 生成日志
config = projector.ProjectorConfig()
embedding = config.embeddings.add()
embedding.tensor_name = y.name
# 指定 embedding 对应的原始数据信息
embedding.metadata_path = META_FILE
# 指定 sprite 图像及大小
embedding.sprite.image_path = SPRITE_FILE
embedding.sprite.single_image_dim.extend([28, 28])
# 写入日志
projector.visualize_embeddings(summary_writer, config)
# 生成会话,写入文件
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.save(sess, os.path.join(LOG_DIR, "model"), TRAINING_STEPS)
summary_writer.close()
# 主函数先调用模型训练,再处理测试数据,最后将输出矩阵输出到 PROJECTOR 需要的日志文件中
示例14: use_gpu
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import InteractiveSession [as 别名]
def use_gpu():
"""Configuration for GPU"""
from keras.backend.tensorflow_backend import set_session
os.environ['CUDA_VISIBLE_DEVICES'] = str(0)
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.5
config.gpu_options.allow_growth = True
set_session(tf.InteractiveSession(config=config))
示例15: use_gpu
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import InteractiveSession [as 别名]
def use_gpu():
"""Configuration for GPU"""
from keras.backend.tensorflow_backend import set_session
os.environ['CUDA_VISIBLE_DEVICES'] = str(0) # 使用第一台GPU
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.5 # GPU使用率为50%
config.gpu_options.allow_growth = True # 允许容量增长
set_session(tf.InteractiveSession(config=config))