本文整理汇总了Python中tensorflow.GraphKeys方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.GraphKeys方法的具体用法?Python tensorflow.GraphKeys怎么用?Python tensorflow.GraphKeys使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.GraphKeys方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_GraphKeys
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import GraphKeys [as 别名]
def get_GraphKeys():
if tf.__version__ < "2.0.0":
return tf.GraphKeys
else:
return tf.compat.v1.GraphKeys
示例2: _get_ops_to_replicate
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import GraphKeys [as 别名]
def _get_ops_to_replicate(gradiend_info_list):
grads = [gradient_info._grad for gradient_info in gradiend_info_list]
grad_related = set()
for grad in grads:
if isinstance(grad, tf.IndexedSlices):
grad_related.add(grad.indices)
grad_related.add(grad.values)
grad_related.add(grad.dense_shape)
elif isinstance(grad, tf.Tensor):
grad_related.add(grad)
else:
raise RuntimeError("Incorrect grad.")
grads_ancestor_ops = get_ancestors([grad.op for grad in grad_related],
include_control_inputs=True)
pipeline_ops = get_pipeline_ops(grads_ancestor_ops)
global_var_related_ops = set()
for global_var in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES):
global_var_related_ops.add(global_var.op)
global_var_related_ops.add(global_var.initializer)
global_var_related_ops.add(global_var._snapshot.op)
table_related_ops = set()
for table_init in tf.get_collection(tf.GraphKeys.TABLE_INITIALIZERS):
table_related_ops.add(table_init)
table_related_ops.add(table_init.inputs[0].op)
# Assume that all variables are member of either GLOBAL_VARIABLES
# or LOCAL_VARIABLES.
local_var_op_to_var = \
dict([(var.op, var)
for var in tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES)])
local_var_ops = set(local_var_op_to_var.keys())
local_var_ops.intersection_update(grads_ancestor_ops)
ops_to_replicate = set()
ops_to_replicate.update(grads_ancestor_ops)
ops_to_replicate.update(pipeline_ops)
ops_to_replicate.difference_update(global_var_related_ops)
ops_to_replicate.difference_update(table_related_ops)
ops_to_replicate.update(
[local_var_op_to_var[var_op].initializer for var_op in local_var_ops])
return ops_to_replicate
示例3: _handle_collection_def
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import GraphKeys [as 别名]
def _handle_collection_def(multi_gpu_meta_graph_def, op_names_to_replicate,
num_replicas):
allow_bytes_list_keys = [tf.GraphKeys.QUEUE_RUNNERS,
tf.GraphKeys.GLOBAL_VARIABLES,
tf.GraphKeys.TRAINABLE_VARIABLES,
tf.GraphKeys.MOVING_AVERAGE_VARIABLES,
tf.GraphKeys.LOCAL_VARIABLES,
tf.GraphKeys.MODEL_VARIABLES,
tf.GraphKeys.GRADIENTS_INFO,
tf.GraphKeys.GLOBAL_STEP]
keys_to_remove = []
for key, col_def in multi_gpu_meta_graph_def.collection_def.items():
kind = col_def.WhichOneof("kind")
# Update node_list collections (e.g., GLOBAL_STEP, TRAIN_OP, UPDATE_OP,
# LOSSES, ...)
if kind == 'node_list':
new_col_def = get_new_col_def_of_node_list(
col_def, op_names_to_replicate, num_replicas)
multi_gpu_meta_graph_def.collection_def[key].Clear()
multi_gpu_meta_graph_def.collection_def[key].CopyFrom(new_col_def)
elif kind == 'bytes_list':
if ops.get_from_proto_function(key):
# Collections in allow_bytes_list_keys will be handled
# explicitly below
# (e.g., QUEUE_RUNNERS, LOCAL_VARIABLES, ...)
if key in allow_bytes_list_keys:
continue
# Remove unhandled collections (e.g., COND_CONTEXT)
# TODO: Handle all protos in tf.GraphKeys
else:
keys_to_remove.append(key)
# Keep collections without proto function
# (e.g., user defined string)
else:
continue
else:
raise RuntimeError("Should not reach here")
for key in keys_to_remove:
del multi_gpu_meta_graph_def.collection_def[key]
# Update QUEUE_RUNNERS and LOCAL_VARIABLES collection
update_queue_runners(multi_gpu_meta_graph_def, op_names_to_replicate,
num_replicas)
update_local_variables(multi_gpu_meta_graph_def, op_names_to_replicate,
num_replicas)
update_shard_info_for_in_graph(multi_gpu_meta_graph_def, num_replicas)
示例4: add_tensorboard
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import GraphKeys [as 别名]
def add_tensorboard(self, session, tensorboard_dir, tb_run_name=None, timeline_enabled=False):
"""
Add the tensorboard operations to the RNN
This method will add ops to feed tensorboard
self.train_summaries_op : will produce the summary for a training step
self.test_summaries_op : will produce the summary for a test step
self.summary_writer_op : will write the summary to disk
Parameters
----------
:param session: the tensorflow session
:param tensorboard_dir: path to tensorboard directory
:param tb_run_name: directory name for the tensorboard files inside tensorboard_dir, if None a default dir
will be created
:param timeline_enabled: enable the output of a trace file for timeline visualization
"""
self.tensorboard_dir = tensorboard_dir
self.timeline_enabled = timeline_enabled
# Define GraphKeys for TensorBoard
graphkey_training = tf.GraphKeys()
graphkey_test = tf.GraphKeys()
# Learning rate
tf.summary.scalar('Learning_rate', self.learning_rate_var, collections=[graphkey_training, graphkey_test])
# Loss
with tf.name_scope('Mean_loss'):
mean_loss = tf.divide(self.accumulated_mean_loss, self.mini_batch)
tf.summary.scalar('Training', mean_loss, collections=[graphkey_training])
tf.summary.scalar('Test', mean_loss, collections=[graphkey_test])
# Accuracy
with tf.name_scope('Accuracy_-_Error_Rate'):
mean_error_rate = tf.divide(self.accumulated_error_rate, self.mini_batch)
tf.summary.scalar('Training', mean_error_rate, collections=[graphkey_training])
tf.summary.scalar('Test', mean_error_rate, collections=[graphkey_test])
# Hidden state
with tf.name_scope('RNN_internal_state'):
for idx, state_variable in enumerate(self.rnn_tuple_state):
tf.summary.histogram('Training_layer-{0}_cell_state'.format(idx), state_variable[0],
collections=[graphkey_training])
tf.summary.histogram('Test_layer-{0}_cell_state'.format(idx), state_variable[0],
collections=[graphkey_test])
tf.summary.histogram('Training_layer-{0}_hidden_state'.format(idx), state_variable[1],
collections=[graphkey_training])
tf.summary.histogram('Test_layer-{0}_hidden_state'.format(idx), state_variable[1],
collections=[graphkey_test])
self.train_summaries_op = tf.summary.merge_all(key=graphkey_training)
self.test_summaries_op = tf.summary.merge_all(key=graphkey_test)
if tb_run_name is None:
run_name = datetime.now().strftime('%Y-%m-%d--%H-%M-%S')
else:
run_name = tb_run_name
self.summary_writer_op = tf.summary.FileWriter(tensorboard_dir + '/' + run_name + '/', graph=session.graph)
示例5: add_tensorboard
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import GraphKeys [as 别名]
def add_tensorboard(self, session, tensorboard_dir, tb_run_name=None, timeline_enabled=False):
"""
Add the tensorboard operations to the acoustic RNN
This method will add ops to feed tensorboard
self.train_summaries_op : will produce the summary for a training step
self.test_summaries_op : will produce the summary for a test step
self.summary_writer_op : will write the summary to disk
Parameters
----------
:param session: the tensorflow session
:param tensorboard_dir: path to tensorboard directory
:param tb_run_name: directory name for the tensorboard files inside tensorboard_dir, if None a default dir
will be created
:param timeline_enabled: enable the output of a trace file for timeline visualization
"""
self.tensorboard_dir = tensorboard_dir
self.timeline_enabled = timeline_enabled
# Define GraphKeys for TensorBoard
graphkey_training = tf.GraphKeys()
graphkey_test = tf.GraphKeys()
# Learning rate
tf.summary.scalar('Learning_rate', self.learning_rate_var, collections=[graphkey_training, graphkey_test])
# Loss
with tf.name_scope('Mean_loss'):
mean_loss = tf.divide(self.accumulated_mean_loss, self.mini_batch)
tf.summary.scalar('Training', mean_loss, collections=[graphkey_training])
tf.summary.scalar('Test', mean_loss, collections=[graphkey_test])
# Accuracy
with tf.name_scope('Accuracy_-_Error_Rate'):
mean_error_rate = tf.divide(self.accumulated_error_rate, self.mini_batch)
tf.summary.scalar('Training', mean_error_rate, collections=[graphkey_training])
tf.summary.scalar('Test', mean_error_rate, collections=[graphkey_test])
# Hidden state
with tf.name_scope('RNN_internal_state'):
for idx, state_variable in enumerate(self.rnn_tuple_state):
tf.summary.histogram('Training_layer-{0}_cell_state'.format(idx), state_variable[0],
collections=[graphkey_training])
tf.summary.histogram('Test_layer-{0}_cell_state'.format(idx), state_variable[0],
collections=[graphkey_test])
tf.summary.histogram('Training_layer-{0}_hidden_state'.format(idx), state_variable[1],
collections=[graphkey_training])
tf.summary.histogram('Test_layer-{0}_hidden_state'.format(idx), state_variable[1],
collections=[graphkey_test])
self.train_summaries_op = tf.summary.merge_all(key=graphkey_training)
self.test_summaries_op = tf.summary.merge_all(key=graphkey_test)
if tb_run_name is None:
run_name = datetime.now().strftime('%Y-%m-%d--%H-%M-%S')
else:
run_name = tb_run_name
self.summary_writer_op = tf.summary.FileWriter(tensorboard_dir + '/' + run_name + '/', graph=session.graph)
示例6: build_model
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import GraphKeys [as 别名]
def build_model(self, input_imgs, is_training, targets, masks=None, privileged_input=None):
'''Builds the model. Assumes that the input is from range [0, 1].
Args:
input_imgs: list of input images (scaled between -1 and 1) with the
dimensions specified in the cfg
is_training: flag for whether the model is in training mode or not
mask: mask used for computing sum of squares loss. If None, we assume
it is np.ones.
'''
print('building model')
cfg = self.cfg
self.is_training = is_training
if self.decoder_only:
encoder_output = input_imgs # Assume that the input is the representation
else:
encoder_output = self.build_encoder(input_imgs, is_training)
# encoder_output = self.build_encoder(input_imgs, is_training)
final_output = self.build_siamese_output_postprocess(encoder_output, is_training)
losses = self.get_losses(final_output, targets, is_softmax='l2_loss' not in cfg)
# use weight regularization
if 'omit_weight_reg' in cfg and cfg['omit_weight_reg']:
add_reg = False
else:
add_reg = True
# get losses
regularization_loss = tf.add_n( slim.losses.get_regularization_losses(), name='losses/regularization_loss' )
total_loss = slim.losses.get_total_loss( add_regularization_losses=add_reg,
name='losses/total_loss')
self.input_images = input_imgs
self.targets = targets
self.masks = masks
self.encoder_output = encoder_output
self.losses = losses
self.task_loss = losses[0]
self.total_loss = total_loss
self.decoder_output = final_output
# add summaries
slim.summarize_variables()
slim.summarize_weights()
slim.summarize_biases()
slim.summarize_activations()
slim.summarize_collection(tf.GraphKeys.LOSSES)
tf.summary.scalar('accuracy', self.accuracy)
slim.summarize_tensor( regularization_loss )
slim.summarize_tensor( total_loss )
self.model_built = True
示例7: get_losses
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import GraphKeys [as 别名]
def get_losses(self, final_output, target, is_softmax=True):
'''Returns the loss for a Siamese Network.
Args:
final_output: tensor that represent the final output of the image bundle.
target: Tensor of target to be output by the siamese network.
Returns:
losses: list of tensors representing each loss component
'''
print('setting up losses...')
self.target = target
self.final_output = final_output
with tf.variable_scope('losses'):
if is_softmax:
correct_prediction = tf.equal(tf.argmax(final_output,1), target)
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
siamese_loss = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=final_output,
labels=target,
name='softmax_loss'))
self.siamese_loss = siamese_loss
else:
# If it's not softmax, it's l2 norm loss.
self.accuracy = 0
# self.l2_loss = tf.losses.mean_squared_error(
# final_output,
# target,
# scope='d1',
# loss_collection=tf.GraphKeys,
# reduction="none")
target = tf.to_float(target)
final_output = tf.to_float(final_output)
self.l2_loss = tf.norm(target - final_output, axis=1)
#self.l2_loss_sum = tf.reduce_sum(self.l2_loss, 1)
siamese_loss = self.l2_loss
#if self.threshold is not None:
if False:
ind = tf.unstack(siamese_loss)
siamese_loss = [ tf.cond(tf.greater(x, self.threshold),
lambda: self.threshold + self.threshold * tf.log(x / self.threshold),
lambda: x) for x in ind ]
self.robust_l2_loss = siamese_loss
siamese_loss = tf.stack(siamese_loss)
self.siamese_loss = tf.reduce_sum(siamese_loss) / self.cfg['batch_size']
tf.add_to_collection(tf.GraphKeys.LOSSES, self.siamese_loss)
losses = [self.siamese_loss]
return losses
示例8: build_model
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import GraphKeys [as 别名]
def build_model(self, input_imgs, is_training, targets, masks=None, privileged_input=None):
'''Builds the model. Assumes that the input is from range [0, 1].
Args:
input_imgs: batch of input images (scaled between -1 and 1) with the
dimensions specified in the cfg
is_training: flag for whether the model is in training mode or not
mask: mask used for computing sum of squares loss. If None, we assume
it is np.ones.
'''
print('building model')
cfg = self.cfg
self.is_training= is_training
self.masks = masks
if self.decoder_only:
encoder_output = input_imgs
else:
encoder_output = self.build_encoder(input_imgs, is_training)
final_output = self.build_postprocess(encoder_output, is_training)
losses = self.get_losses(final_output, targets, is_softmax='l2_loss' not in cfg)
# use weight regularization
if 'omit_weight_reg' in cfg and cfg['omit_weight_reg']:
add_reg = False
else:
add_reg = True
# get losses
regularization_loss = tf.add_n( slim.losses.get_regularization_losses(), name='losses/regularization_loss' )
total_loss = slim.losses.get_total_loss( add_regularization_losses=add_reg,
name='losses/total_loss')
self.input_images = input_imgs
self.targets = targets
self.masks = masks
self.encoder_output = encoder_output
self.decoder_output = final_output
self.losses = losses
self.total_loss = total_loss
# add summaries
if self.extended_summaries:
slim.summarize_variables()
slim.summarize_weights()
slim.summarize_biases()
slim.summarize_activations()
slim.summarize_collection(tf.GraphKeys.LOSSES)
slim.summarize_tensor( regularization_loss )
slim.summarize_tensor( total_loss )
self.model_built = True
示例9: build_model
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import GraphKeys [as 别名]
def build_model(self, input_imgs, is_training, targets, masks=None, privileged_input=None):
'''Builds the model. Assumes that the input is from range [0, 1].
Args:
input_imgs: batch of input images (scaled between -1 and 1) with the
dimensions specified in the cfg
is_training: flag for whether the model is in training mode or not
mask: mask used for computing sum of squares loss. If None, we assume
it is np.ones.
'''
print('building model')
cfg = self.cfg
self.is_training= is_training
if self.decoder_only:
encoder_output = input_imgs
else:
encoder_output = self.build_encoder(input_imgs, is_training)
final_output = encoder_output
self.input_images = input_imgs
self.targets = targets
self.encoder_output = encoder_output
self.decoder_output = final_output
if not is_training:
losses = self.get_losses(final_output, targets, is_softmax='l2_loss' not in cfg)
# use weight regularization
if 'omit_weight_reg' in cfg and cfg['omit_weight_reg']:
add_reg = False
else:
add_reg = True
# get losses
regularization_loss = tf.add_n( slim.losses.get_regularization_losses(), name='losses/regularization_loss' )
total_loss = slim.losses.get_total_loss( add_regularization_losses=add_reg,
name='losses/total_loss')
self.losses = losses
self.total_loss = total_loss
slim.summarize_tensor( regularization_loss )
slim.summarize_tensor( total_loss )
# add summaries
if self.extended_summaries:
slim.summarize_variables()
slim.summarize_weights()
slim.summarize_biases()
slim.summarize_activations()
slim.summarize_collection(tf.GraphKeys.LOSSES)
self.model_built = True
示例10: get_losses
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import GraphKeys [as 别名]
def get_losses( self, output_vectors, idx_segments, masks ):
'''Returns the metric loss for 'num_pixels' embedding vectors.
Args:
output_imgs: Tensor of images output by the decoder.
desired_imgs: Tensor of target images to be output by the decoder.
masks: Tensor of masks to be applied when computing sum of squares
loss.
Returns:
losses: list of tensors representing each loss component
'''
print('setting up losses...')
self.output_images = output_vectors
self.target_images = idx_segments
self.masks = masks
with tf.variable_scope('losses'):
last_axis = 2
fir, sec, seg_id = tf.unstack(idx_segments, axis=last_axis)
idxes = tf.stack([self.batch_index_slice, fir, sec], axis=last_axis)
self.embed = tf.gather_nd( output_vectors, idxes )
embed = self.embed
square = tf.reduce_sum( embed*embed, axis=-1 )
square_t = tf.expand_dims(square, axis=-1)
square = tf.expand_dims(square, axis=1)
pairwise_dist = square - 2 * tf.matmul(embed, tf.transpose(embed, perm=[0,2,1])) + square_t
pairwise_dist = tf.clip_by_value( pairwise_dist, 0, 80)
#pairwise_dist = 0 - pairwise_dist
self.pairwise_dist = pairwise_dist
pairwise_exp = tf.exp(pairwise_dist) + 1
sigma = tf.divide(2 , pairwise_exp)
sigma = tf.clip_by_value(sigma,1e-7,1.0 - 1e-7)
self.sigma = sigma
same = tf.log(sigma)
diff = tf.log(1 - sigma)
self.same = same
self.diff = diff
seg_id_i = tf.tile(tf.expand_dims(seg_id, -1), [1, 1, self.num_pixels])
seg_id_j = tf.transpose(seg_id_i, perm=[0,2,1])
seg_comp = tf.equal(seg_id_i, seg_id_j)
seg_same = tf.cast(seg_comp, self.input_type)
seg_diff = 1 - seg_same
loss_matrix = seg_same * same + seg_diff * diff
reduced_loss = 0 - tf.reduce_mean(loss_matrix) # / self.num_pixels
tf.add_to_collection(tf.GraphKeys.LOSSES, reduced_loss)
self.metric_loss = reduced_loss
losses = [reduced_loss]
return losses