当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.Dimension方法代码示例

本文整理汇总了Python中tensorflow.Dimension方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.Dimension方法的具体用法?Python tensorflow.Dimension怎么用?Python tensorflow.Dimension使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.Dimension方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Dimension [as 别名]
def build(self, input_shape):
    input_shape = tf.TensorShape(input_shape)
    input_dim = input_shape[-1]
    if isinstance(input_dim, tf.Dimension):
      input_dim = input_dim.value
    self.local_scale = self.add_weight(
        shape=(input_dim,),
        name='local_scale',
        initializer=self.local_scale_initializer,
        regularizer=self.local_scale_regularizer,
        constraint=self.local_scale_constraint)
    self.global_scale = self.add_weight(
        shape=(),
        name='global_scale',
        initializer=self.global_scale_initializer,
        regularizer=self.global_scale_regularizer,
        constraint=self.global_scale_constraint)
    super(DenseHierarchical, self).build(input_shape) 
开发者ID:yyht,项目名称:BERT,代码行数:20,代码来源:bayes.py

示例2: build

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Dimension [as 别名]
def build(self, input_shape):
    input_shape = tf.TensorShape(input_shape)
    last_dim = input_shape[-1]
    if isinstance(last_dim, tf.Dimension):
      last_dim = last_dim.value
    if last_dim is None:
      raise ValueError('The last dimension of the inputs to `ActNorm` '
                       'should be defined. Found `None`.')
    bias = self.add_weight('bias', [last_dim], dtype=self.dtype)
    log_scale = self.add_weight('log_scale', [last_dim], dtype=self.dtype)
    # Set data-dependent initializers.
    bias = bias.assign(self.bias_initial_value)
    with tf.control_dependencies([bias]):
      self.bias = bias
    log_scale = log_scale.assign(self.log_scale_initial_value)
    with tf.control_dependencies([log_scale]):
      self.log_scale = log_scale
    self.built = True 
开发者ID:yyht,项目名称:BERT,代码行数:20,代码来源:reversible_layers.py

示例3: build

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Dimension [as 别名]
def build(self, input_shape=None):
    input_shape = tf.TensorShape(input_shape)
    input_dim = input_shape[-1]
    if isinstance(input_dim, tf.Dimension):
      input_dim = input_dim.value
    self.conditional_inputs = self.add_weight(
        shape=(self.num_inducing, input_dim),
        name='inducing_inputs',
        initializer=self.inducing_inputs_initializer,
        regularizer=self.inducing_inputs_regularizer,
        constraint=self.inducing_inputs_constraint)
    self.conditional_outputs = self.add_weight(
        shape=(self.num_inducing, self.units),
        name='inducing_outputs',
        initializer=self.inducing_outputs_initializer,
        regularizer=self.inducing_outputs_regularizer,
        constraint=self.inducing_outputs_constraint)
    super(SparseGaussianProcess, self).build(input_shape) 
开发者ID:yyht,项目名称:BERT,代码行数:20,代码来源:gaussian_process.py

示例4: count_trainable_params

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Dimension [as 别名]
def count_trainable_params(graph: Optional[tf.Graph] = None) -> int:
    """
    Count number of trainable parameters inside of `tf.trainable_variables`

    Parameters
    ----------
    graph
        tensorflow graph

    Returns
    -------
    number_of_parameters
        number of trainable parameters
    """
    graph = graph or tf.get_default_graph()
    total_parameters = 0
    for variable in graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
        # shape is an array of tf.Dimension
        shape = variable.get_shape()
        variable_parameters = 1
        for dim in shape:
            variable_parameters *= dim.value
        total_parameters += variable_parameters
    return total_parameters 
开发者ID:audi,项目名称:nucleus7,代码行数:26,代码来源:tf_utils.py

示例5: select_present

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Dimension [as 别名]
def select_present(x, presence, batch_size=1, name='select_present'):
    with tf.variable_scope(name):
        presence = 1 - tf.to_int32(presence)  # invert mask

        bs = x.get_shape()[0]
        if bs != None:  # here type(bs) is tf.Dimension and == is ok
            batch_size = int(bs)

        num_partitions = 2 * batch_size
        r = tf.range(0, num_partitions,  2)
        r.set_shape(tf.TensorShape(batch_size))
        r = broadcast_against(r, presence)

        presence += r

        selected = tf.dynamic_partition(x, presence, num_partitions)
        selected = tf.concat(axis=0, values=selected)
        selected = tf.reshape(selected, tf.shape(x))

    return selected 
开发者ID:akosiorek,项目名称:hart,代码行数:22,代码来源:tensor_ops.py

示例6: testWhileShapeInference

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Dimension [as 别名]
def testWhileShapeInference(self):
    with self.test_session():
      i = tf.constant(0)
      m = tf.ones([2, 2])
      c = lambda i, j: tf.less(i, 2)
      def b(i, j):
        new_i = tf.add(i, 1)
        new_j = tf.concat(0, [j, j])
        return [new_i, new_j]
      r = tf.while_loop(c, b, [i, m],
                        [i.get_shape(), tensor_shape.TensorShape([None, 2])])
      self.assertTrue(r[1].get_shape()[0].value is None)
      self.assertEqual(r[1].get_shape()[1], tf.Dimension(2))

      with self.assertRaisesRegexp(ValueError, "not an invariant for"):
        r = tf.while_loop(c, b, [i, m]) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:18,代码来源:control_flow_ops_py_test.py

示例7: get_variables_number

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Dimension [as 别名]
def get_variables_number(trainable_variables):
    """
    calculate the number of trainable variables in the current network
    :param trainable_variables: trainable variables
    :return:
        total_parameters: the total number of trainable variables
    """
    total_parameters = 0
    for variable in trainable_variables:
        # shape is an array of tf.Dimension
        shapes = variable.get_shape()
        variable_parameters = 1
        for shape in shapes:
            variable_parameters *= shape.value
        total_parameters += variable_parameters

    return total_parameters 
开发者ID:Charleswyt,项目名称:tf_audio_steganalysis,代码行数:19,代码来源:utils.py

示例8: repeat_2d

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Dimension [as 别名]
def repeat_2d(x, reps, axis):
    assert(axis == 0 or axis == 1)

    if axis == 1:
        x = tf.transpose(x)

    static_shape = list(x.get_shape())
    dyn_shape = tf.shape(x)
    x_repeat = tf.reshape(tf.tile(x, [1, reps]), (dyn_shape[0] * reps, dyn_shape[1]))
    if static_shape[0].value is not None:
        static_shape[0] = tf.Dimension(static_shape[0].value *reps)
    x_repeat.set_shape(static_shape)

    if axis == 1:
        x_repeat = tf.transpose(x_repeat)

    return x_repeat 
开发者ID:gkahn13,项目名称:GtS,代码行数:19,代码来源:tf_utils.py

示例9: show_parameter_count

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Dimension [as 别名]
def show_parameter_count(variables):
    """
    Count and print how many parameters there are.
    """
    total_parameters = 0
    for variable in variables:
        name = variable.name

        # shape is an array of tf.Dimension
        shape = variable.get_shape()
        variable_parametes = 1
        for dim in shape:
            variable_parametes *= dim.value
        print('{}: {} ({} parameters)'.format(name,
                                              shape,
                                              variable_parametes))
        total_parameters += variable_parametes

    print('Total: {} parameters'.format(total_parameters)) 
开发者ID:erickrf,项目名称:autoencoder,代码行数:21,代码来源:train-autoencoder.py

示例10: clip_gradients

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Dimension [as 别名]
def clip_gradients(gvs, value_clip=0, norm_clip=0):
  """Clips gradients."""

  grads, vs = zip(*gvs)
  grads = list(grads)

  if value_clip > 0:
    for i, g in enumerate(grads):
      if g is not None:
        grads[i] = tf.clip_by_value(g, -value_clip, value_clip)

  if norm_clip > 0:
    n_params = sum(np.prod(g.shape) for g in grads if g is not None)
    # n_params is most likely tf.Dimension and cannot be converted
    # to float directly
    norm_clip *= np.sqrt(float(int(n_params)))

    grads_to_clip = [(i, g) for i, g in enumerate(grads) if g is not None]
    idx, grads_to_clip = zip(*grads_to_clip)
    clipped_grads = tf.clip_by_global_norm(grads_to_clip, norm_clip)[0]

    for i, g in zip(idx, clipped_grads):
      grads[i] = g

  return [item for item in zip(grads, vs)] 
开发者ID:akosiorek,项目名称:stacked_capsule_autoencoders,代码行数:27,代码来源:tools.py

示例11: generate_iterator_ops

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Dimension [as 别名]
def generate_iterator_ops(filenames, train=True, reuse=False):
    dataset = tf.data.TFRecordDataset(filenames)
    dataset = dataset.map(_parse_function)

    if train:
        dataset = dataset.shuffle(buffer_size=2 * FLAGS.batch_size)

    dataset = dataset.padded_batch(
        FLAGS.batch_size,
        ([tf.Dimension(None), tf.Dimension(1024), tf.Dimension(3)],
         [tf.Dimension(None)], [])
    )
    data_iterator = dataset.make_initializable_iterator()
    next_x, next_y, next_l = data_iterator.get_next()

    if train:
        ops = annotation_func_train(next_x, next_y, next_l, train=train, reuse=reuse)
    else:
        ops = annotation_func_test(next_x, next_l, reuse=reuse)

    ops = list(ops)
    ops.append(next_y)
    ops.append(next_l)

    return data_iterator, ops 
开发者ID:noc-lab,项目名称:clinical_concept_extraction,代码行数:27,代码来源:training.py

示例12: build

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Dimension [as 别名]
def build(self, input_shape):
        self._validate_input_shape(input_shape)
        
        d_k = self._d_k if self._d_k else input_shape[1][-1]
        d_model = self._d_model if self._d_model else input_shape[1][-1]
        d_v = self._d_v

        if type(d_k) == tf.Dimension:
            d_k = d_k.value
        if type(d_model) == tf.Dimension:
            d_model = d_model.value
        
        self._q_layers = []
        self._k_layers = []
        self._v_layers = []
        self._sdp_layer = ScaledDotProductAttention(return_attention=self._return_attention)
    
        for _ in range(self._h):
            self._q_layers.append(
                TimeDistributed(
                    Dense(d_k, activation=self._activation, use_bias=False)
                )
            )
            self._k_layers.append(
                TimeDistributed(
                    Dense(d_k, activation=self._activation, use_bias=False)
                )
            )
            self._v_layers.append(
                TimeDistributed(
                    Dense(d_v, activation=self._activation, use_bias=False)
                )
            )
        
        self._output = TimeDistributed(Dense(d_model))
        #if self._return_attention:
        #    self._output = Concatenate() 
开发者ID:zimmerrol,项目名称:keras-utility-layer-collection,代码行数:39,代码来源:attention.py

示例13: shape_to_list

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Dimension [as 别名]
def shape_to_list(shape: Iterable[tf.Dimension]) -> List[Union[int, None]]:
    """Convert a Tensorflow shape to a list of ints."""
    return [dim.value for dim in shape] 
开发者ID:produvia,项目名称:ai-platform,代码行数:5,代码来源:tfutil.py

示例14: _compute_fans

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Dimension [as 别名]
def _compute_fans(shape):
  """Computes the number of input and output units for a weight shape.

  Args:
    shape: Integer shape tuple or TF tensor shape.

  Returns:
    A tuple of scalars (fan_in, fan_out).
  """
  if len(shape) < 1:  # Just to avoid errors for constants.
    fan_in = fan_out = 1
  elif len(shape) == 1:
    fan_in = fan_out = shape[0]
  elif len(shape) == 2:
    fan_in = shape[0]
    fan_out = shape[1]
  else:
    # Assuming convolution kernels (2D, 3D, or more).
    # kernel shape: (..., input_depth, depth)
    receptive_field_size = 1.
    for dim in shape[:-2]:
      receptive_field_size *= dim
    fan_in = shape[-2] * receptive_field_size
    fan_out = shape[-1] * receptive_field_size
  if isinstance(fan_in, tf.Dimension):
    fan_in = fan_in.value
  if isinstance(fan_out, tf.Dimension):
    fan_out = fan_out.value
  return fan_in, fan_out 
开发者ID:yyht,项目名称:BERT,代码行数:31,代码来源:initializers.py

示例15: compute_output_shape

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import Dimension [as 别名]
def compute_output_shape(self, input_shape):
    input_shape = tf.TensorShape(input_shape)
    input_shape = input_shape.with_rank_at_least(2)
    input_dim = input_shape[-1]
    if isinstance(input_dim, tf.Dimension):
      input_dim = input_dim.value
    if input_dim is None:
      raise ValueError(
          'The innermost dimension of input_shape must be defined, but saw: %s'
          % input_shape)
    return input_shape[:-1].concatenate(self.units) 
开发者ID:yyht,项目名称:BERT,代码行数:13,代码来源:gaussian_process.py


注:本文中的tensorflow.Dimension方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。